Skip to content

HongtengXu/Relational-AutoEncoders

Repository files navigation

Relational-AutoEncoders

This package includes the implementation of my ICML 2020 work "Learning Autoencoders with Relational Regularization" [https://arxiv.org/pdf/2002.02913.pdf]

Main Dependencies

  • argparse
  • matplotlib
  • numpy
  • pickle
  • pytorch
  • sklearn

Platform:

We test this example in a conda environment on Windows 10, with cuda 10.1 and one 1080Ti GPU

Test our method:

  1. Open a terminal and go to the folder of the example.
  2. python test_rae.py --model-type deterministic --source-data DATANAME (Learning a deterministic RAE for a dataset.)
  3. python test_rae.py --model-type probabilistic --source-data DATANAME (Learning a probabilistic RAE for a dataset.)
  • The DATANAME can be MNIST and CelebA

Test baselines:

  1. Open a terminal and go to the folder of the example.
  2. python test_MODEL.py --source-data DATANAME
  • The MODEL can be vae, wae, swae, gmvae, and vampprior

All the results are in the folder "Results".

About

Learning Autoencoders with Relational Regularization

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages