forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Kernel] [Triton] [AMD] Adding Triton implementations awq_dequantize …
…and awq_gemm to support AWQ (vllm-project#7386)
- Loading branch information
Showing
5 changed files
with
493 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
"""Tests for the AWQ Triton kernel. | ||
Run `pytest tests/kernels/test_awq_triton.py`. | ||
""" | ||
import pytest | ||
import torch | ||
|
||
from vllm.model_executor.layers.quantization.awq_triton import ( | ||
AWQ_TRITON_SUPPORTED_GROUP_SIZES, awq_dequantize_triton, awq_gemm_triton) | ||
|
||
device = "cuda" | ||
|
||
|
||
def reverse_awq_order(t: torch.Tensor): | ||
bits = 4 | ||
AWQ_REVERSE_ORDER = [0, 4, 1, 5, 2, 6, 3, 7] | ||
reverse_order_tensor = torch.arange( | ||
t.shape[-1], | ||
dtype=torch.int32, | ||
device=t.device, | ||
) | ||
reverse_order_tensor = reverse_order_tensor.view(-1, 32 // bits) | ||
reverse_order_tensor = reverse_order_tensor[:, AWQ_REVERSE_ORDER] | ||
reverse_order_tensor = reverse_order_tensor.view(-1) | ||
|
||
t = t[:, reverse_order_tensor] & 0xF | ||
return t | ||
|
||
|
||
# qweights - [R , C // 8], int32 | ||
# scales - [R // G, C ], float16 | ||
# zeros - [R // G, C // 8], int32 | ||
def awq_dequantize_torch(qweight: torch.Tensor, scales: torch.Tensor, | ||
qzeros: torch.Tensor, | ||
group_size: int) -> torch.Tensor: | ||
|
||
if group_size == -1: | ||
group_size = qweight.shape[0] | ||
|
||
bits = 4 | ||
shifts = torch.arange(0, 32, bits, device=qzeros.device) | ||
|
||
iweights = torch.bitwise_right_shift(qweight[:, :, None], | ||
shifts[None, None, :]).to(torch.int8) | ||
|
||
iweights = iweights.view(iweights.shape[0], -1) | ||
|
||
zeros = torch.bitwise_right_shift(qzeros[:, :, None], | ||
shifts[None, None, :]).to(torch.int8) | ||
zeros = zeros.view(qzeros.shape[0], -1) | ||
zeros = reverse_awq_order(zeros) | ||
|
||
iweights = reverse_awq_order(iweights) | ||
|
||
iweights = torch.bitwise_and(iweights, (2**bits) - 1) | ||
zeros = torch.bitwise_and(zeros, (2**bits) - 1) | ||
|
||
scales = scales.repeat_interleave(group_size, dim=0) | ||
zeros = zeros.repeat_interleave(group_size, dim=0) | ||
return (iweights - zeros) * scales | ||
|
||
|
||
# qweights - [R , C // 8], int32 | ||
# scales - [R // G, C ], float16 | ||
# zeros - [R // G, C // 8], int32 | ||
@pytest.mark.parametrize("qweight_rows", [3584, 18944, 128, 256, 512, 1024]) | ||
@pytest.mark.parametrize("qweight_cols", [448, 576, 4736, 16, 32, 64, 128]) | ||
@pytest.mark.parametrize("group_size", AWQ_TRITON_SUPPORTED_GROUP_SIZES) | ||
def test_dequantize(qweight_rows, qweight_cols, group_size): | ||
|
||
if group_size == -1: | ||
group_size = qweight_rows | ||
|
||
qweight_dtype = torch.int32 | ||
scales_rows = qweight_rows // group_size | ||
scales_cols = qweight_cols * 8 | ||
scales_dtype = torch.float16 | ||
zeros_rows = scales_rows | ||
zeros_cols = qweight_cols | ||
zeros_dtype = torch.int32 | ||
|
||
torch.manual_seed(0) | ||
|
||
qweight = torch.randint(0, | ||
torch.iinfo(torch.int32).max, | ||
(qweight_rows, qweight_cols), | ||
dtype=qweight_dtype, | ||
device=device) | ||
scales = torch.rand(scales_rows, | ||
scales_cols, | ||
dtype=scales_dtype, | ||
device=device) | ||
zeros = torch.randint(0, | ||
torch.iinfo(torch.int32).max, | ||
(zeros_rows, zeros_cols), | ||
dtype=zeros_dtype, | ||
device=device) | ||
|
||
iweights_triton = awq_dequantize_triton(qweight, scales, zeros) | ||
|
||
assert (not torch.any(torch.isinf(iweights_triton)) | ||
and not torch.any(torch.isnan(iweights_triton))) | ||
|
||
iweights_torch = awq_dequantize_torch(qweight, scales, zeros, group_size) | ||
|
||
torch.testing.assert_close(iweights_triton, iweights_torch) | ||
|
||
|
||
# input - [N, K] | ||
# qweight - [K, M // 8] | ||
# qzeros - [K // G, M // 8] | ||
# scales - [K // G, M] | ||
@pytest.mark.parametrize("N", [1, 2, 4, 8, 14, 17, 23, 32]) | ||
@pytest.mark.parametrize("K", [128]) | ||
@pytest.mark.parametrize("M", [16, 24, 32]) | ||
@pytest.mark.parametrize("group_size", AWQ_TRITON_SUPPORTED_GROUP_SIZES) | ||
@pytest.mark.parametrize("splitK", [1, 8]) | ||
def test_gemm(N, K, M, splitK, group_size): | ||
|
||
if group_size == -1: | ||
group_size = K | ||
|
||
split_k_iters = splitK | ||
|
||
input_rows = N | ||
input_cols = K | ||
input_dtype = torch.float32 | ||
qweight_rows = input_cols | ||
qweight_cols = M // 8 | ||
scales_rows = qweight_rows // group_size | ||
scales_cols = M | ||
scales_dtype = torch.float32 | ||
qzeros_rows = scales_rows | ||
qzeros_cols = qweight_cols | ||
|
||
torch.manual_seed(0) | ||
|
||
input = torch.rand((input_rows, input_cols), | ||
dtype=input_dtype, | ||
device=device) | ||
qweight = torch.randint(0, | ||
torch.iinfo(torch.int32).max, | ||
(qweight_rows, qweight_cols), | ||
device=device) | ||
qzeros = torch.randint(0, | ||
torch.iinfo(torch.int32).max, | ||
(qzeros_rows, qzeros_cols), | ||
device=device) | ||
scales = torch.rand((scales_rows, scales_cols), | ||
dtype=scales_dtype, | ||
device=device) | ||
|
||
output_triton = awq_gemm_triton(input, qweight, scales, qzeros, | ||
split_k_iters) | ||
|
||
assert (not torch.any(torch.isinf(output_triton)) | ||
and not torch.any(torch.isnan(output_triton))) | ||
|
||
dequantized_weights = awq_dequantize_triton(qweight, scales, qzeros) | ||
|
||
output_torch = torch.matmul(input, dequantized_weights) | ||
|
||
assert (not torch.any(torch.isinf(output_torch)) | ||
and not torch.any(torch.isnan(output_torch))) | ||
|
||
torch.testing.assert_close(output_triton.cpu(), | ||
output_torch.cpu(), | ||
atol=1e-1, | ||
rtol=1e-1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.