Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

GitHub Actions test #6 #23

Closed
wants to merge 4 commits into from
Closed

GitHub Actions test #6 #23

wants to merge 4 commits into from

Conversation

HyukjinKwon
Copy link
Owner

No description provided.

HyukjinKwon pushed a commit that referenced this pull request Nov 11, 2020
### What changes were proposed in this pull request?
Push down filter through expand.  For case below:
```
create table t1(pid int, uid int, sid int, dt date, suid int) using parquet;
create table t2(pid int, vs int, uid int, csid int) using parquet;

SELECT
       years,
       appversion,
       SUM(uusers) AS users
FROM   (SELECT
               Date_trunc('year', dt)          AS years,
               CASE
                 WHEN h.pid = 3 THEN 'iOS'
                 WHEN h.pid = 4 THEN 'Android'
                 ELSE 'Other'
               END                             AS viewport,
               h.vs                            AS appversion,
               Count(DISTINCT u.uid)           AS uusers
               ,Count(DISTINCT u.suid)         AS srcusers
        FROM   t1 u
               join t2 h
                 ON h.uid = u.uid
        GROUP  BY 1,
                  2,
                  3) AS a
WHERE  viewport = 'iOS'
GROUP  BY 1,
          2
```

Plan. before this pr:
```
== Physical Plan ==
*(5) HashAggregate(keys=[years#30, appversion#32], functions=[sum(uusers#33L)])
+- Exchange hashpartitioning(years#30, appversion#32, 200), true, [id=apache#251]
   +- *(4) HashAggregate(keys=[years#30, appversion#32], functions=[partial_sum(uusers#33L)])
      +- *(4) HashAggregate(keys=[date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12], functions=[count(if ((gid#44 = 1)) u.`uid`#47 else null)])
         +- Exchange hashpartitioning(date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12, 200), true, [id=apache#246]
            +- *(3) HashAggregate(keys=[date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12], functions=[partial_count(if ((gid#44 = 1)) u.`uid`#47 else null)])
               +- *(3) HashAggregate(keys=[date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12, u.`uid`#47, u.`suid`#48, gid#44], functions=[])
                  +- Exchange hashpartitioning(date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12, u.`uid`#47, u.`suid`#48, gid#44, 200), true, [id=apache#241]
                     +- *(2) HashAggregate(keys=[date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12, u.`uid`#47, u.`suid`#48, gid#44], functions=[])
                        +- *(2) Filter (CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46 = iOS)
                           +- *(2) Expand [ArrayBuffer(date_trunc(year, cast(dt#9 as timestamp), Some(Etc/GMT+7)), CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END, vs#12, uid#7, null, 1), ArrayBuffer(date_trunc(year, cast(dt#9 as timestamp), Some(Etc/GMT+7)), CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END, vs#12, null, suid#10, 2)], [date_trunc('year', CAST(u.`dt` AS TIMESTAMP))#45, CASE WHEN (h.`pid` = 3) THEN 'iOS' WHEN (h.`pid` = 4) THEN 'Android' ELSE 'Other' END#46, vs#12, u.`uid`#47, u.`suid`#48, gid#44]
                              +- *(2) Project [uid#7, dt#9, suid#10, pid#11, vs#12]
                                 +- *(2) BroadcastHashJoin [uid#7], [uid#13], Inner, BuildRight
                                    :- *(2) Project [uid#7, dt#9, suid#10]
                                    :  +- *(2) Filter isnotnull(uid#7)
                                    :     +- *(2) ColumnarToRow
                                    :        +- FileScan parquet default.t1[uid#7,dt#9,suid#10] Batched: true, DataFilters: [isnotnull(uid#7)], Format: Parquet, Location: InMemoryFileIndex[file:/root/spark-3.0.0-bin-hadoop3.2/spark-warehouse/t1], PartitionFilters: [], PushedFilters: [IsNotNull(uid)], ReadSchema: struct<uid:int,dt:date,suid:int>
                                    +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[2, int, true] as bigint))), [id=apache#233]
                                       +- *(1) Project [pid#11, vs#12, uid#13]
                                          +- *(1) Filter isnotnull(uid#13)
                                             +- *(1) ColumnarToRow
                                                +- FileScan parquet default.t2[pid#11,vs#12,uid#13] Batched: true, DataFilters: [isnotnull(uid#13)], Format: Parquet, Location: InMemoryFileIndex[file:/root/spark-3.0.0-bin-hadoop3.2/spark-warehouse/t2], PartitionFilters: [], PushedFilters: [IsNotNull(uid)], ReadSchema: struct<pid:int,vs:int,uid:int>
```

Plan. after. this pr. :
```
== Physical Plan ==
AdaptiveSparkPlan isFinalPlan=false
+- HashAggregate(keys=[years#0, appversion#2], functions=[sum(uusers#3L)], output=[years#0, appversion#2, users#5L])
   +- Exchange hashpartitioning(years#0, appversion#2, 5), true, [id=apache#71]
      +- HashAggregate(keys=[years#0, appversion#2], functions=[partial_sum(uusers#3L)], output=[years#0, appversion#2, sum#22L])
         +- HashAggregate(keys=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12], functions=[count(distinct uid#7)], output=[years#0, appversion#2, uusers#3L])
            +- Exchange hashpartitioning(date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, 5), true, [id=apache#67]
               +- HashAggregate(keys=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12], functions=[partial_count(distinct uid#7)], output=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, count#27L])
                  +- HashAggregate(keys=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, uid#7], functions=[], output=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, uid#7])
                     +- Exchange hashpartitioning(date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, uid#7, 5), true, [id=apache#63]
                        +- HashAggregate(keys=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles)) AS date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END AS CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, uid#7], functions=[], output=[date_trunc(year, cast(dt#9 as timestamp), Some(America/Los_Angeles))#23, CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END#24, vs#12, uid#7])
                           +- Project [uid#7, dt#9, pid#11, vs#12]
                              +- BroadcastHashJoin [uid#7], [uid#13], Inner, BuildRight, false
                                 :- Filter isnotnull(uid#7)
                                 :  +- FileScan parquet default.t1[uid#7,dt#9] Batched: true, DataFilters: [isnotnull(uid#7)], Format: Parquet, Location: InMemoryFileIndex[file:/private/var/folders/4l/7_c5c97s1_gb0d9_d6shygx00000gn/T/warehouse-c069d87..., PartitionFilters: [], PushedFilters: [IsNotNull(uid)], ReadSchema: struct<uid:int,dt:date>
                                 +- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[2, int, false] as bigint)),false), [id=apache#58]
                                    +- Filter ((CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END = iOS) AND isnotnull(uid#13))
                                       +- FileScan parquet default.t2[pid#11,vs#12,uid#13] Batched: true, DataFilters: [(CASE WHEN (pid#11 = 3) THEN iOS WHEN (pid#11 = 4) THEN Android ELSE Other END = iOS), isnotnull..., Format: Parquet, Location: InMemoryFileIndex[file:/private/var/folders/4l/7_c5c97s1_gb0d9_d6shygx00000gn/T/warehouse-c069d87..., PartitionFilters: [], PushedFilters: [IsNotNull(uid)], ReadSchema: struct<pid:int,vs:int,uid:int>

```

### Why are the changes needed?
Improve  performance, filter more data.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
Added UT

Closes apache#30278 from AngersZhuuuu/SPARK-33302.

Authored-by: angerszhu <angers.zhu@gmail.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
@HyukjinKwon HyukjinKwon deleted the test-junit-sparkr branch December 7, 2020 02:06
HyukjinKwon pushed a commit that referenced this pull request Mar 22, 2021
…join (build right side)

### What changes were proposed in this pull request?

This PR is to add code-gen support for left semi / left anti BroadcastNestedLoopJoin (build side is right side). The execution code path for build left side cannot fit into whole stage code-gen framework, so only add the code-gen for build right side here.

Reference: the iterator (non-code-gen) code path is `BroadcastNestedLoopJoinExec.leftExistenceJoin()` with `BuildRight`.

### Why are the changes needed?

Improve query CPU performance.
Tested with a simple query:

```
val N = 20 << 20
val M = 1 << 4

val dim = broadcast(spark.range(M).selectExpr("id as k2"))
codegenBenchmark("left semi broadcast nested loop join", N) {
  park.range(N).selectExpr(s"id as k1").join(
    dim, col("k1") + 1 <= col("k2"), "left_semi")
}
```

Seeing 5x run time improvement:

```
Running benchmark: left semi broadcast nested loop join
  Running case: left semi broadcast nested loop join codegen off
  Stopped after 2 iterations, 6958 ms
  Running case: left semi broadcast nested loop join codegen on
  Stopped after 5 iterations, 3383 ms

Java HotSpot(TM) 64-Bit Server VM 1.8.0_181-b13 on Mac OS X 10.15.7
Intel(R) Core(TM) i9-9980HK CPU  2.40GHz
left semi broadcast nested loop join:             Best Time(ms)   Avg Time(ms)   Stdev(ms)    Rate(M/s)   Per Row(ns)   Relative
--------------------------------------------------------------------------------------------------------------------------------
left semi broadcast nested loop join codegen off           3434           3479          65          6.1         163.7       1.0X
left semi broadcast nested loop join codegen on             672            677           5         31.2          32.1       5.1X
```

### Does this PR introduce _any_ user-facing change?

No.

### How was this patch tested?

Changed existing unit test in `ExistenceJoinSuite.scala` to cover all code paths:
* left semi/anti + empty right side + empty condition
* left semi/anti + non-empty right side + empty condition
* left semi/anti + right side + non-empty condition

Added unit test in `WholeStageCodegenSuite.scala` to make sure code-gen for broadcast nested loop join is taking effect, and test for multiple join case as well.

Example query:

```
val df1 = spark.range(4).select($"id".as("k1"))
val df2 = spark.range(3).select($"id".as("k2"))
df1.join(df2, $"k1" + 1 <= $"k2", "left_semi").explain("codegen")
```

Example generated code (`bnlj_doConsume_0` method):
This is for left semi join. The generated code for left anti join is mostly to be same as here, except L55 to be `if (bnlj_findMatchedRow_0 == false) {`.
```
== Subtree 2 / 2 (maxMethodCodeSize:282; maxConstantPoolSize:203(0.31% used); numInnerClasses:0) ==
*(2) Project [id#0L AS k1#2L]
+- *(2) BroadcastNestedLoopJoin BuildRight, LeftSemi, ((id#0L + 1) <= k2#6L)
   :- *(2) Range (0, 4, step=1, splits=2)
   +- BroadcastExchange IdentityBroadcastMode, [id=#23]
      +- *(1) Project [id#4L AS k2#6L]
         +- *(1) Range (0, 3, step=1, splits=2)

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage2(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=2
/* 006 */ final class GeneratedIteratorForCodegenStage2 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean range_initRange_0;
/* 010 */   private long range_nextIndex_0;
/* 011 */   private TaskContext range_taskContext_0;
/* 012 */   private InputMetrics range_inputMetrics_0;
/* 013 */   private long range_batchEnd_0;
/* 014 */   private long range_numElementsTodo_0;
/* 015 */   private InternalRow[] bnlj_buildRowArray_0;
/* 016 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] range_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[4];
/* 017 */
/* 018 */   public GeneratedIteratorForCodegenStage2(Object[] references) {
/* 019 */     this.references = references;
/* 020 */   }
/* 021 */
/* 022 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 023 */     partitionIndex = index;
/* 024 */     this.inputs = inputs;
/* 025 */
/* 026 */     range_taskContext_0 = TaskContext.get();
/* 027 */     range_inputMetrics_0 = range_taskContext_0.taskMetrics().inputMetrics();
/* 028 */     range_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 029 */     range_mutableStateArray_0[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 030 */     bnlj_buildRowArray_0 = (InternalRow[]) ((org.apache.spark.broadcast.TorrentBroadcast) references[1] /* broadcastTerm */).value();
/* 031 */     range_mutableStateArray_0[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     range_mutableStateArray_0[3] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */
/* 034 */   }
/* 035 */
/* 036 */   private void bnlj_doConsume_0(long bnlj_expr_0_0) throws java.io.IOException {
/* 037 */     boolean bnlj_findMatchedRow_0 = false;
/* 038 */     for (int bnlj_arrayIndex_0 = 0; bnlj_arrayIndex_0 < bnlj_buildRowArray_0.length; bnlj_arrayIndex_0++) {
/* 039 */       UnsafeRow bnlj_buildRow_0 = (UnsafeRow) bnlj_buildRowArray_0[bnlj_arrayIndex_0];
/* 040 */
/* 041 */       long bnlj_value_1 = bnlj_buildRow_0.getLong(0);
/* 042 */
/* 043 */       long bnlj_value_3 = -1L;
/* 044 */
/* 045 */       bnlj_value_3 = bnlj_expr_0_0 + 1L;
/* 046 */
/* 047 */       boolean bnlj_value_2 = false;
/* 048 */       bnlj_value_2 = bnlj_value_3 <= bnlj_value_1;
/* 049 */       if (!(false || !bnlj_value_2))
/* 050 */       {
/* 051 */         bnlj_findMatchedRow_0 = true;
/* 052 */         break;
/* 053 */       }
/* 054 */     }
/* 055 */     if (bnlj_findMatchedRow_0 == true) {
/* 056 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* numOutputRows */).add(1);
/* 057 */
/* 058 */       // common sub-expressions
/* 059 */
/* 060 */       range_mutableStateArray_0[3].reset();
/* 061 */
/* 062 */       range_mutableStateArray_0[3].write(0, bnlj_expr_0_0);
/* 063 */       append((range_mutableStateArray_0[3].getRow()).copy());
/* 064 */
/* 065 */     }
/* 066 */
/* 067 */   }
/* 068 */
/* 069 */   private void initRange(int idx) {
/* 070 */     java.math.BigInteger index = java.math.BigInteger.valueOf(idx);
/* 071 */     java.math.BigInteger numSlice = java.math.BigInteger.valueOf(2L);
/* 072 */     java.math.BigInteger numElement = java.math.BigInteger.valueOf(4L);
/* 073 */     java.math.BigInteger step = java.math.BigInteger.valueOf(1L);
/* 074 */     java.math.BigInteger start = java.math.BigInteger.valueOf(0L);
/* 075 */     long partitionEnd;
/* 076 */
/* 077 */     java.math.BigInteger st = index.multiply(numElement).divide(numSlice).multiply(step).add(start);
/* 078 */     if (st.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 079 */       range_nextIndex_0 = Long.MAX_VALUE;
/* 080 */     } else if (st.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 081 */       range_nextIndex_0 = Long.MIN_VALUE;
/* 082 */     } else {
/* 083 */       range_nextIndex_0 = st.longValue();
/* 084 */     }
/* 085 */     range_batchEnd_0 = range_nextIndex_0;
/* 086 */
/* 087 */     java.math.BigInteger end = index.add(java.math.BigInteger.ONE).multiply(numElement).divide(numSlice)
/* 088 */     .multiply(step).add(start);
/* 089 */     if (end.compareTo(java.math.BigInteger.valueOf(Long.MAX_VALUE)) > 0) {
/* 090 */       partitionEnd = Long.MAX_VALUE;
/* 091 */     } else if (end.compareTo(java.math.BigInteger.valueOf(Long.MIN_VALUE)) < 0) {
/* 092 */       partitionEnd = Long.MIN_VALUE;
/* 093 */     } else {
/* 094 */       partitionEnd = end.longValue();
/* 095 */     }
/* 096 */
/* 097 */     java.math.BigInteger startToEnd = java.math.BigInteger.valueOf(partitionEnd).subtract(
/* 098 */       java.math.BigInteger.valueOf(range_nextIndex_0));
/* 099 */     range_numElementsTodo_0  = startToEnd.divide(step).longValue();
/* 100 */     if (range_numElementsTodo_0 < 0) {
/* 101 */       range_numElementsTodo_0 = 0;
/* 102 */     } else if (startToEnd.remainder(step).compareTo(java.math.BigInteger.valueOf(0L)) != 0) {
/* 103 */       range_numElementsTodo_0++;
/* 104 */     }
/* 105 */   }
/* 106 */
/* 107 */   protected void processNext() throws java.io.IOException {
/* 108 */     // initialize Range
/* 109 */     if (!range_initRange_0) {
/* 110 */       range_initRange_0 = true;
/* 111 */       initRange(partitionIndex);
/* 112 */     }
/* 113 */
/* 114 */     while (true) {
/* 115 */       if (range_nextIndex_0 == range_batchEnd_0) {
/* 116 */         long range_nextBatchTodo_0;
/* 117 */         if (range_numElementsTodo_0 > 1000L) {
/* 118 */           range_nextBatchTodo_0 = 1000L;
/* 119 */           range_numElementsTodo_0 -= 1000L;
/* 120 */         } else {
/* 121 */           range_nextBatchTodo_0 = range_numElementsTodo_0;
/* 122 */           range_numElementsTodo_0 = 0;
/* 123 */           if (range_nextBatchTodo_0 == 0) break;
/* 124 */         }
/* 125 */         range_batchEnd_0 += range_nextBatchTodo_0 * 1L;
/* 126 */       }
/* 127 */
/* 128 */       int range_localEnd_0 = (int)((range_batchEnd_0 - range_nextIndex_0) / 1L);
/* 129 */       for (int range_localIdx_0 = 0; range_localIdx_0 < range_localEnd_0; range_localIdx_0++) {
/* 130 */         long range_value_0 = ((long)range_localIdx_0 * 1L) + range_nextIndex_0;
/* 131 */
/* 132 */         bnlj_doConsume_0(range_value_0);
/* 133 */
/* 134 */         if (shouldStop()) {
/* 135 */           range_nextIndex_0 = range_value_0 + 1L;
/* 136 */           ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(range_localIdx_0 + 1);
/* 137 */           range_inputMetrics_0.incRecordsRead(range_localIdx_0 + 1);
/* 138 */           return;
/* 139 */         }
/* 140 */
/* 141 */       }
/* 142 */       range_nextIndex_0 = range_batchEnd_0;
/* 143 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(range_localEnd_0);
/* 144 */       range_inputMetrics_0.incRecordsRead(range_localEnd_0);
/* 145 */       range_taskContext_0.killTaskIfInterrupted();
/* 146 */     }
/* 147 */   }
/* 148 */
/* 149 */ }
```

Closes apache#31874 from c21/code-semi-anti.

Authored-by: Cheng Su <chengsu@fb.com>
Signed-off-by: Wenchen Fan <wenchen@databricks.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant