pre-trained checkpoints
We upload the pre-trained model, trained on VB with 0.5 as the dropout ratio.
We got:
csig:3.8357 cbak:3.2350 covl:3.1840 pesq:2.5430 ssnr:8.9398 stoi:0.9335 on VB
csig:2.8673 cbak:2.1805 covl:2.1647 pesq:1.5709 ssnr:1.6121 stoi:0.8673 on CHIME-4
Weigths-dis is the checkpoint of '1step dis' in the experimental part of the paper, trained on VB.
We got:
csig:3.6228 cbak:3.2605 covl:3.0523 pesq:2.4946 ssnr:9.7642 stoi:0.9327 on VB
csig:2.2069 cbak:1.9519 covl:1.6281 pesq:1.2173 ssnr:1.9884 stoi:0.7230 on CHIME-4