The dependencies installation and data prepration please refer to CMRNet.
python main_single_map.py with batch_size=8 data_folder=./KITTI_ODOMETRY/sequences/ epochs=120 max_r=10 max_t=2 BASE_LEARNING_RATE=0.0001 savemodel=./checkpoints/ test_sequence=00
Change folder path to save LiDAR point cloud in "./models/CMRNet/CMRNet_single_save.py"
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=00
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=03
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=05
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=06
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=07
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=08
python main_single_save.py with batch_size=1 data_folder=./KITTI_ODOMETRY/sequences/ weights='./checkpoints/xxx.tar' test_sequence=09
Change folder path of LiDAR point cloud in "Dataset_kitti_localization.py"
python main_single_loc.py with batch_size=12 data_folder=./KITTI_ODOMETRY/sequences/ epochs=150 max_r=10 max_t=2 BASE_LEARNING_RATE=0.0001 savemodel=./checkpoints/ test_sequence=00
python evaluate.py with test_sequence=00 maps_folder=local_maps data_folder=./KITTI_ODOMETRY/sequences/ weight="['./checkpoints/iter1.tar','./checkpoints/iter2.tar','./checkpoints/iter3.tar']"
You can acquire the weights for map generation here, and the weights for localization here1, here2, and here3.
The iteration results in KITTI:
Median |
Median |
|
---|---|---|
Iteration 1 | 0.21 m | 0.94° |
Iteration 2 | 0.06 m | 0.35° |
Iteration 3 | 0.03 m | 0.33° |
If you use LHMap-loc, please cite:
@INPROCEEDINGS{10610718,
author={Wu, Xinrui and Xu, Jianbo and Hu, Puyuan and Wang, Guangming and Wang, Hesheng},
booktitle={2024 IEEE International Conference on Robotics and Automation (ICRA)},
title={LHMap-loc: Cross-Modal Monocular Localization Using LiDAR Point Cloud Heat Map},
year={2024},
volume={},
number={},
pages={8500-8506},
doi={10.1109/ICRA57147.2024.10610718}}