The repository is a Detector project that allows you to easily detect tomato's disease using Simple Web services. Currently, a total of 7 classes of disease can be detected with bounding box.
- Image file available
- Video file available
- New yolo models can be added
- Other format models can be added
- Dataset: https://www.aihub.or.kr/aidata/129
- Model
- Detection
- Yolov5 Github : https://github.com/ultralytics/yolov5
- Tool
- Frontend : Streamlit - https://docs.streamlit.io/en/stable/#
- Backend : FastAPI - https://fastapi.tiangolo.com/
- Annotation Tool : CVAT - https://github.com/openvinotoolkit/cvat
-
Clone This Repository
$ git clone https://github.com/IVADL/PDD-prototype.git
-
docker-compose commands
$ docker-compose build $ docker-compose up
-
Visit Streamlit UI
- visit http://localhost:8501
- Run model
- Select model : yolov5
- Test Image or video upload
- Click 'Detect Plant Disease Button'
The project was conducted at the Korea Lab of Artificial Intelligence and formed a team called IVADL.
MIT