-
Notifications
You must be signed in to change notification settings - Fork 444
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
1efed79
commit 9b9a11e
Showing
2 changed files
with
311 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from typing import Any, Dict, List, Tuple | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from lmdeploy.pytorch.config import BackendConfig, CacheConfig, ModelConfig | ||
from lmdeploy.pytorch.model_inputs import StepContext | ||
from lmdeploy.pytorch.models.utils.cudagraph import CudaGraphMeta | ||
from lmdeploy.utils import get_logger | ||
|
||
from ...graph_runner import GraphRunner | ||
|
||
logger = get_logger('lmdeploy') | ||
|
||
BuffType = Dict[str, Tensor] | ||
|
||
|
||
def round_up_to_multiple_of_8(n: int): | ||
return (n + 7) // 8 * 8 | ||
|
||
|
||
def _false(*args, **kwargs): | ||
"""default value of not support cuda graph.""" | ||
return False | ||
|
||
|
||
class MACASingleGraphRunner: | ||
"""MACA single graph runner.""" | ||
|
||
def __init__( | ||
self, | ||
model: torch.nn.Module, | ||
max_batches: int, | ||
max_tokens: int, | ||
num_blocks: int, | ||
is_decoding: bool, | ||
pool: Tuple[int, int], | ||
device: torch.device, | ||
): | ||
self.model = model | ||
self.ctx_mgr = model.ctx_mgr | ||
self.meta = CudaGraphMeta( | ||
max_batchs=max_batches, | ||
max_tokens=max_tokens, | ||
num_blocks=num_blocks, | ||
is_decoding=is_decoding, | ||
device=device, | ||
input_buffers=dict(), | ||
output_buffers=dict(), | ||
) | ||
self.device = device | ||
self.max_batches = max_batches | ||
self.max_tokens = max_tokens | ||
self.num_blocks = num_blocks | ||
self.is_decoding = is_decoding | ||
self.pool = pool | ||
self._graph: torch.cuda.CUDAGraph = None | ||
|
||
def capture(self, **kwargs): | ||
"""capture graph.""" | ||
self.meta.input_buffers = self.make_buffers_cudagraph( | ||
self.meta, **kwargs) | ||
padded_kwargs = self.fill_buffers_cudagraph(self.meta, **kwargs) | ||
context = self.ctx_mgr.current_context() | ||
self.update_context_cudagraph(self.meta, context) | ||
current_stream = torch.cuda.current_stream() | ||
|
||
output = self.model(**padded_kwargs) | ||
|
||
# warmup | ||
self._graph = torch.cuda.CUDAGraph() | ||
# unsafe kernel call in other thread might invalid the capture | ||
# so we set thread_safe capture mode here. | ||
with torch.cuda.graph(self._graph, | ||
pool=self.pool, | ||
stream=current_stream, | ||
capture_error_mode='thread_local'): | ||
output = self.model(**padded_kwargs) | ||
|
||
output_buffers = dict(logits=output) | ||
self.meta.output_buffers = output_buffers | ||
return output | ||
|
||
def forward(self, **kwargs): | ||
"""forward.""" | ||
num_tokens = kwargs['input_ids'].size(-1) | ||
assert self._graph is not None | ||
self.fill_buffers_cudagraph(self.meta, **kwargs) | ||
context = self.ctx_mgr.current_context() | ||
self.update_context_cudagraph(self.meta, context) | ||
|
||
self._graph.replay() | ||
output = self.meta.output_buffers['logits'][:, :num_tokens] | ||
return output | ||
|
||
def make_buffers_cudagraph(self, graph_meta: CudaGraphMeta, *args, | ||
**kwargs) -> BuffType: | ||
"""make cudagraph buffers from forward inputs.""" | ||
max_batches = graph_meta.max_batchs | ||
max_tokens = graph_meta.max_tokens | ||
num_blocks = graph_meta.num_blocks | ||
device = graph_meta.device | ||
|
||
input_buffers: BuffType = dict() | ||
input_buffers['input_ids'] = torch.zeros(1, | ||
max_tokens, | ||
dtype=torch.int32, | ||
device=device) | ||
input_buffers['position_ids'] = torch.ones((1, max_tokens), | ||
dtype=torch.int32, | ||
device=device) | ||
|
||
input_buffers['block_offsets'] = torch.zeros((max_batches, num_blocks), | ||
dtype=torch.int32, | ||
device=device) | ||
|
||
input_buffers['q_start_loc'] = torch.arange(max_batches + 1, | ||
dtype=torch.int32, | ||
device=device) | ||
|
||
input_buffers['q_seqlens'] = torch.ones(max_batches, | ||
dtype=torch.int32, | ||
device=device) | ||
|
||
input_buffers['kv_seqlens'] = torch.ones(max_batches, | ||
dtype=torch.int32, | ||
device=device) | ||
|
||
input_buffers['kv_start_indices'] = torch.ones((max_batches, 1), | ||
dtype=torch.int64, | ||
device=device) | ||
|
||
input_buffers['local_adapter_ids'] = torch.zeros(max_batches, | ||
dtype=torch.int32, | ||
device=device) | ||
return input_buffers | ||
|
||
def fill_buffers_cudagraph(self, graph_meta: CudaGraphMeta, | ||
input_ids: Tensor, position_ids: Tensor, | ||
past_key_values: List, attn_metadata: Any, | ||
inputs_embeds: Tensor, | ||
**kwargs) -> Dict[str, Tensor]: | ||
"""fill cudagraph buffers from forward inputs.""" | ||
is_decoding = graph_meta.is_decoding | ||
block_offsets: Tensor = attn_metadata.block_offsets | ||
q_start_loc: Tensor = attn_metadata.q_start_loc | ||
q_seqlens: Tensor = attn_metadata.q_seqlens | ||
kv_seqlens: Tensor = attn_metadata.kv_seqlens | ||
kv_start_indices: Tensor = attn_metadata.kv_start_indices | ||
|
||
input_buffers: BuffType = graph_meta.input_buffers | ||
|
||
batch_size, num_blocks = block_offsets.size() | ||
num_tokens = input_ids.size(-1) | ||
q_start_loc_size = q_start_loc.size(0) | ||
|
||
# fill buffer | ||
input_buffers['input_ids'][:, :num_tokens] = input_ids | ||
input_buffers['position_ids'][:, :num_tokens] = position_ids | ||
input_buffers[ | ||
'block_offsets'][:batch_size, :num_blocks] = block_offsets | ||
input_buffers['q_seqlens'][:batch_size] = q_seqlens | ||
input_buffers['kv_seqlens'][:batch_size] = kv_seqlens | ||
|
||
input_buffers['q_start_loc'][:q_start_loc_size] = q_start_loc | ||
input_buffers['kv_start_indices'][:batch_size] = kv_start_indices | ||
|
||
if inputs_embeds is not None: | ||
emb_size = inputs_embeds.size(-1) | ||
if 'inputs_embeds' not in input_buffers: | ||
max_num_tokens = input_buffers['input_ids'].size(-1) | ||
input_buffers['inputs_embeds'] = inputs_embeds.new_zeros( | ||
1, max_num_tokens, emb_size) | ||
input_buffers['inputs_embeds'][:, :num_tokens] = inputs_embeds | ||
|
||
# create inputs | ||
new_batch_size = round_up_to_multiple_of_8(batch_size) | ||
q_start_loc_size = round_up_to_multiple_of_8(q_start_loc_size) | ||
|
||
attn_metadata.block_offsets = input_buffers[ | ||
'block_offsets'][:new_batch_size] | ||
attn_metadata.q_start_loc = input_buffers[ | ||
'q_start_loc'][:q_start_loc_size] | ||
attn_metadata.q_seqlens = input_buffers['q_seqlens'][:new_batch_size] | ||
attn_metadata.kv_seqlens = input_buffers['kv_seqlens'][:new_batch_size] | ||
attn_metadata.kv_start_indices = input_buffers[ | ||
'kv_start_indices'][:new_batch_size] | ||
|
||
new_inputs = dict( | ||
past_key_values=past_key_values, | ||
attn_metadata=attn_metadata, | ||
) | ||
|
||
if is_decoding: | ||
new_inputs['input_ids'] = input_buffers[ | ||
'input_ids'][:, :new_batch_size] | ||
new_inputs['position_ids'] = input_buffers[ | ||
'position_ids'][:, :new_batch_size] | ||
else: | ||
new_inputs['input_ids'] = input_buffers['input_ids'] | ||
new_inputs['position_ids'] = input_buffers['position_ids'] | ||
|
||
if inputs_embeds is not None: | ||
if is_decoding: | ||
new_inputs['inputs_embeds'] = input_buffers[ | ||
'inputs_embeds'][:, :new_batch_size] | ||
else: | ||
new_inputs['inputs_embeds'] = input_buffers['inputs_embeds'] | ||
|
||
new_inputs.update(kwargs) | ||
return new_inputs | ||
|
||
def update_context_cudagraph(self, graph_meta, context): | ||
"""update step context with input buffers.""" | ||
input_buffers = graph_meta.input_buffers | ||
context.q_seqlens = input_buffers['q_seqlens'] | ||
context.kv_seqlens = input_buffers['kv_seqlens'] | ||
context.q_start_loc = input_buffers['q_start_loc'] | ||
context.kv_start_indices = input_buffers['kv_start_indices'] | ||
|
||
def __del__(self): | ||
"""del.""" | ||
del self._graph | ||
|
||
|
||
class MACAGraphRunner(GraphRunner): | ||
"""MACA graph runner.""" | ||
|
||
def __init__(self, model: torch.nn.Module, model_config: ModelConfig, | ||
cache_config: CacheConfig, backend_config: BackendConfig, | ||
device: torch.device): | ||
super().__init__(model, model_config, cache_config, backend_config, | ||
device) | ||
self.max_batches = cache_config.max_batches | ||
self.max_tokens = cache_config.max_prefill_token_num | ||
self.num_blocks = cache_config.num_gpu_blocks | ||
|
||
self.enable_graph = self.check_enable_graph() | ||
|
||
self.graph_pool_handle = torch.cuda.graph_pool_handle() | ||
self._runner_map: Dict[Any, MACASingleGraphRunner] = dict() | ||
|
||
def check_enable_graph(self): | ||
"""check enable graph.""" | ||
if self.backend_config.eager_mode: | ||
return _false | ||
|
||
return getattr(self.model, 'support_cuda_graph', _false) | ||
|
||
def get_graph_key(self, input_ids: torch.Tensor, | ||
position_ids: torch.Tensor, past_key_values: List, | ||
attn_metadata: Any, inputs_embeds: torch.Tensor, | ||
**kwargs): | ||
"""get graph key.""" | ||
context = self.ctx_mgr.current_context() | ||
is_decoding = context.is_decoding | ||
num_tokens = input_ids.numel() | ||
new_num_tokens = round_up_to_multiple_of_8(num_tokens) | ||
return (new_num_tokens, is_decoding) | ||
|
||
def __call__(self, **kwargs): | ||
"""call.""" | ||
enable_graph = self.enable_graph(**kwargs) | ||
graph_key = self.get_graph_key(**kwargs) | ||
max_tokens = graph_key[0] | ||
is_decoding = graph_key[1] | ||
|
||
if (not enable_graph) or (not is_decoding): | ||
return self.model(**kwargs) | ||
|
||
if graph_key not in self._runner_map: | ||
max_batches = max_tokens if is_decoding else self.max_batches | ||
runner = MACASingleGraphRunner(self.model, | ||
max_batches=max_batches, | ||
max_tokens=max_tokens, | ||
num_blocks=self.num_blocks, | ||
is_decoding=is_decoding, | ||
pool=self.graph_pool_handle, | ||
device=self.device) | ||
runner.capture(**kwargs) | ||
self._runner_map[graph_key] = runner | ||
else: | ||
runner = self._runner_map[graph_key] | ||
|
||
output = runner.forward(**kwargs) | ||
return output | ||
|
||
def prepare_inputs_for_generation( | ||
self, | ||
past_key_values: List[List[torch.Tensor]], | ||
inputs_embeds: torch.Tensor = None, | ||
context: StepContext = None, | ||
): | ||
"""prepare inputs.""" | ||
return self.model.prepare_inputs_for_generation( | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
context=context, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters