Skip to content
forked from hwwang55/KGCN

A tensorflow implementation of Knowledge Graph Convolutional Networks

Notifications You must be signed in to change notification settings

JasonHu520/KGCN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KGCN

This repository is the implementation of KGCN (arXiv):

Knowledge Graph Convolutional Networks for Recommender Systems
Hongwei Wang, Miao Zhao, Xing Xie, Wenjie Li, Minyi Guo.
In Proceedings of The 2019 Web Conference (WWW 2019)

KGCN is Knowledge Graph Convolutional Networks for recommender systems, which uses the technique of graph convolutional networks (GCN) to proces knowledge graphs for the purpose of recommendation.

Files in the folder

  • data/
    • movie/
      • item_index2entity_id.txt: the mapping from item indices in the raw rating file to entity IDs in the KG;
      • kg.txt: knowledge graph file;
    • music/
      • item_index2entity_id.txt: the mapping from item indices in the raw rating file to entity IDs in the KG;
      • kg.txt: knowledge graph file;
      • user_artists.dat: raw rating file of Last.FM;
  • src/: implementations of KGCN.

Running the code

  • Movie
    (The raw rating file of MovieLens-20M is too large to be contained in this repository. Download the dataset first.)
    $ wget http://files.grouplens.org/datasets/movielens/ml-20m.zip
    $ unzip ml-20m.zip
    $ mv ml-20m/ratings.csv data/movie/
    $ cd src
    $ python preprocess.py --dataset movie
    
  • Music
    • $ cd src
      $ python preprocess.py --dataset music
      
    • open src/main.py file;

    • comment the code blocks of parameter settings for MovieLens-20M;

    • uncomment the code blocks of parameter settings for Last.FM;

    • $ python main.py
      

About

A tensorflow implementation of Knowledge Graph Convolutional Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%