Skip to content

JessicaSchrouff/PRoNTo_v2.1b

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

%__________________________________________________________________________
%    ____  ____        _   ________              ___    ____ 
%   / __ \/ __ \____  / | / /_  __/___     _   _|__ \  / __ \
%  / /_/ / /_/ / __ \/  |/ / / / / __ \   | | / /_/ / / / / /
% / ____/ _, _/ /_/ / /|  / / / / /_/ /   | |/ / __/_/ /_/ / 
%/_/   /_/ |_|\____/_/ |_/ /_/  \____/    |___/____(_)____/  
%
%                         PRoNTO v2.0 - http://www.mlnl.cs.ucl.ac.uk/pronto
%__________________________________________________________________________
% Copyright (C) 2011 Machine Learning & Neuroimaging Laboratory
% 
% This README gives a brief introduction to the PRoNTo software.
% Full details can be found on the PRoNTo website:
% 
%                      http://www.mlnl.cs.ucl.ac.uk/pronto
% 
% See also prt_Contents.m and prt_licence.man.
%
%__________________________________________________________________________
%                                                                   PRoNTo
%
% PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is a software toolbox 
% based on pattern recognition techniques for the analysis of neuroimaging 
% data. Statistical pattern recognition is a field within the area of machine 
% learning which is concerned with automatic discovery of regularities in 
% data through the use of computer algorithms, and with the use of these 
% regularities to take actions such as classifying the data into different 
% categories. In PRoNTo, brain scans are treated as spatial patterns and 
% statistical learning models are used to identify statistical properties of 
% the data that can be used to discriminate between experimental conditions 
% or groups of subjects (classification models) or to predict a continuous 
% measure (regression models).
%
% PRoNTo aims to facilitate the interaction between machine learning and 
% neuroimaging communities. On one hand, the machine learning community can 
% contribute to the toolbox with novel machine learning models. On the other 
% hand, the toolbox provides a variety of tools for the neuroscience and 
% clinical neuroscience communities, enabling them to ask new questions that 
% cannot be easily investigated using existing software and analysis tools.
%
%                               ----------------
% 
% Please refer to this version as "PRoNTo2" in papers and communications.
% 
%__________________________________________________________________________