Skip to content
/ HFC Public

[ICCV-2023] Heterogeneous Forgetting Compensation for Class-Incremental Learning

Notifications You must be signed in to change notification settings

JiahuaDong/HFC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b70d2a9 · Dec 4, 2023

History

17 Commits
Nov 29, 2023
Nov 29, 2023
Dec 4, 2023
Nov 29, 2023
Dec 4, 2023
Nov 29, 2023
Nov 29, 2023
Nov 29, 2023
Nov 29, 2023
Nov 29, 2023
Nov 29, 2023
Nov 29, 2023

Repository files navigation

The PyTorch Implementation for HFC

Requirements

  • torch>=1.7.0
  • torchvision>=0.8.1
  • timm==0.6.5
  • continuum>=1.0.27
  • numpy
  • scikit-learn

Datasets

CIFAR100

You don't need to do anything before running the experiments on CIFAR100 dataset.

ImageNet100

Refer to ImageNet100_Split

ImageNet1000

Data preparation: download and extract ImageNet images from http://image-net.org/. The directory structure should be

│ILSVRC2012/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Experiments

You should pretrain the backbone ViT-B refer to https://github.com/facebookresearch/mae, then give the the path of model in option.py(--model_path).

Training

For exampler, if you wangt to run CILformer on CIFAR100 in the 10 steps setting:

Modify the path of dataset in './scripts/cifar/task10.sh'.

sh scripts/cifar/task10.sh

Results

The results of HFC will be written in './traning_log'.

Acknowledgement

Thanks for the great code base from https://github.com/DRSAD/iCaRL and https://github.com/arthurdouillard/dytox.

Citations

If you find this code is useful to your research, please consider citing the following paper.

@InProceedings{Dong_2023_ICCV,
    author    = {Dong, Jiahua and Liang, Wenqi and Cong, Yang and Sun, Gan},
    title     = {Heterogeneous Forgetting Compensation for Class-Incremental Learning},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2023},
    pages     = {11742-11751}
}

About

[ICCV-2023] Heterogeneous Forgetting Compensation for Class-Incremental Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published