-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f4d78db
commit 7a186a8
Showing
86 changed files
with
17,225 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2023 Hai-Long Sun, Da-Wei Zhou, Fu-Yun Wang, Changhong Zhong | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
255 changes: 255 additions & 0 deletions
255
Continual Learning with Pretrained Models/backbone/linears.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
''' | ||
Reference: | ||
https://github.com/hshustc/CVPR19_Incremental_Learning/blob/master/cifar100-class-incremental/modified_linear.py | ||
''' | ||
import math | ||
import torch | ||
from torch import nn | ||
from torch.nn import functional as F | ||
from copy import deepcopy | ||
from timm.models.layers.weight_init import trunc_normal_ | ||
|
||
|
||
class SimpleLinear(nn.Module): | ||
''' | ||
Reference: | ||
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py | ||
''' | ||
def __init__(self, in_features, out_features, bias=True): | ||
super(SimpleLinear, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features | ||
self.weight = nn.Parameter(torch.Tensor(out_features, in_features)) | ||
if bias: | ||
self.bias = nn.Parameter(torch.Tensor(out_features)) | ||
else: | ||
self.register_parameter('bias', None) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
nn.init.kaiming_uniform_(self.weight, nonlinearity='linear') | ||
nn.init.constant_(self.bias, 0) | ||
|
||
def forward(self, input): | ||
return {'logits': F.linear(input, self.weight, self.bias)} | ||
|
||
|
||
class CosineLinear(nn.Module): | ||
def __init__(self, in_features, out_features, nb_proxy=1, to_reduce=False, sigma=True): | ||
super(CosineLinear, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features * nb_proxy | ||
self.nb_proxy = nb_proxy | ||
self.to_reduce = to_reduce | ||
self.weight = nn.Parameter(torch.Tensor(self.out_features, in_features)) | ||
if sigma: | ||
self.sigma = nn.Parameter(torch.Tensor(1)) | ||
else: | ||
self.register_parameter('sigma', None) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
stdv = 1. / math.sqrt(self.weight.size(1)) | ||
self.weight.data.uniform_(-stdv, stdv) | ||
if self.sigma is not None: | ||
self.sigma.data.fill_(1) | ||
|
||
def forward(self, input): | ||
out = F.linear(F.normalize(input, p=2, dim=1), F.normalize(self.weight, p=2, dim=1)) | ||
|
||
if self.to_reduce: | ||
# Reduce_proxy | ||
out = reduce_proxies(out, self.nb_proxy) | ||
|
||
if self.sigma is not None: | ||
out = self.sigma * out | ||
|
||
return {'logits': out} | ||
|
||
|
||
class SplitCosineLinear(nn.Module): | ||
def __init__(self, in_features, out_features1, out_features2, nb_proxy=1, sigma=True): | ||
super(SplitCosineLinear, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = (out_features1 + out_features2) * nb_proxy | ||
self.nb_proxy = nb_proxy | ||
self.fc1 = CosineLinear(in_features, out_features1, nb_proxy, False, False) | ||
self.fc2 = CosineLinear(in_features, out_features2, nb_proxy, False, False) | ||
if sigma: | ||
self.sigma = nn.Parameter(torch.Tensor(1)) | ||
self.sigma.data.fill_(1) | ||
else: | ||
self.register_parameter('sigma', None) | ||
|
||
def forward(self, x): | ||
out1 = self.fc1(x) | ||
out2 = self.fc2(x) | ||
|
||
out = torch.cat((out1['logits'], out2['logits']), dim=1) # concatenate along the channel | ||
|
||
# Reduce_proxy | ||
out = reduce_proxies(out, self.nb_proxy) | ||
|
||
if self.sigma is not None: | ||
out = self.sigma * out | ||
|
||
return { | ||
'old_scores': reduce_proxies(out1['logits'], self.nb_proxy), | ||
'new_scores': reduce_proxies(out2['logits'], self.nb_proxy), | ||
'logits': out | ||
} | ||
|
||
|
||
class EaseCosineLinear(nn.Module): | ||
def __init__(self, in_features, out_features, nb_proxy=1, to_reduce=False, sigma=True): | ||
super(EaseCosineLinear, self).__init__() | ||
self.in_features = in_features | ||
self.out_features = out_features * nb_proxy | ||
self.nb_proxy = nb_proxy | ||
self.to_reduce = to_reduce | ||
self.weight = nn.Parameter(torch.Tensor(self.out_features, in_features)) | ||
if sigma: | ||
self.sigma = nn.Parameter(torch.Tensor(1)) | ||
else: | ||
self.register_parameter('sigma', None) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
stdv = 1. / math.sqrt(self.weight.size(1)) | ||
self.weight.data.uniform_(-stdv, stdv) | ||
if self.sigma is not None: | ||
self.sigma.data.fill_(1) | ||
|
||
def reset_parameters_to_zero(self): | ||
self.weight.data.fill_(0) | ||
|
||
def forward(self, input): | ||
out = F.linear(F.normalize(input, p=2, dim=1), F.normalize(self.weight, p=2, dim=1)) | ||
|
||
if self.to_reduce: | ||
# Reduce_proxy | ||
out = reduce_proxies(out, self.nb_proxy) | ||
|
||
if self.sigma is not None: | ||
out = self.sigma * out | ||
|
||
return {'logits': out} | ||
|
||
def forward_reweight(self, input, cur_task, alpha=0.1, beta=0.0, init_cls=10, inc=10, out_dim=768, use_init_ptm=False): | ||
for i in range(cur_task + 1): | ||
if i == 0: | ||
start_cls = 0 | ||
end_cls = init_cls | ||
else: | ||
start_cls = init_cls + (i - 1) * inc | ||
end_cls = start_cls + inc | ||
|
||
out = 0.0 | ||
for j in range((self.in_features // out_dim)): | ||
# PTM feature | ||
if use_init_ptm and j == 0: | ||
input_ptm = F.normalize(input[:, 0:out_dim], p=2, dim=1) | ||
weight_ptm = F.normalize(self.weight[start_cls:end_cls, 0:out_dim], p=2, dim=1) | ||
out_ptm = beta * F.linear(input_ptm, weight_ptm) | ||
out += out_ptm | ||
continue | ||
|
||
input1 = F.normalize(input[:, j*out_dim:(j+1)*out_dim], p=2, dim=1) | ||
weight1 = F.normalize(self.weight[start_cls:end_cls, j*out_dim:(j+1)*out_dim], p=2, dim=1) | ||
if use_init_ptm: | ||
if j != (i+1): | ||
out1 = alpha * F.linear(input1, weight1) | ||
out1 /= cur_task | ||
else: | ||
out1 = F.linear(input1, weight1) | ||
else: | ||
if j != i: | ||
out1 = alpha * F.linear(input1, weight1) | ||
out1 /= cur_task | ||
else: | ||
out1 = F.linear(input1, weight1) | ||
|
||
out += out1 | ||
|
||
if i == 0: | ||
out_all = out | ||
else: | ||
out_all = torch.cat((out_all, out), dim=1) if i != 0 else out | ||
|
||
if self.to_reduce: | ||
# Reduce_proxy | ||
out_all = reduce_proxies(out_all, self.nb_proxy) | ||
|
||
if self.sigma is not None: | ||
out_all = self.sigma * out_all | ||
|
||
return {'logits': out_all} | ||
|
||
|
||
def reduce_proxies(out, nb_proxy): | ||
if nb_proxy == 1: | ||
return out | ||
bs = out.shape[0] | ||
nb_classes = out.shape[1] / nb_proxy | ||
assert nb_classes.is_integer(), 'Shape error' | ||
nb_classes = int(nb_classes) | ||
|
||
simi_per_class = out.view(bs, nb_classes, nb_proxy) | ||
attentions = F.softmax(simi_per_class, dim=-1) | ||
|
||
return (attentions * simi_per_class).sum(-1) | ||
|
||
|
||
class SimpleContinualLinear(nn.Module): | ||
def __init__(self, embed_dim, nb_classes, feat_expand=False, with_norm=False): | ||
super().__init__() | ||
|
||
self.embed_dim = embed_dim | ||
self.feat_expand = feat_expand | ||
self.with_norm = with_norm | ||
heads = [] | ||
single_head = [] | ||
if with_norm: | ||
single_head.append(nn.LayerNorm(embed_dim)) | ||
|
||
single_head.append(nn.Linear(embed_dim, nb_classes, bias=True)) | ||
head = nn.Sequential(*single_head) | ||
|
||
heads.append(head) | ||
self.heads = nn.ModuleList(heads) | ||
for m in self.modules(): | ||
if isinstance(m, nn.Linear): | ||
trunc_normal_(m.weight, std=.02) | ||
if m.bias is not None: | ||
nn.init.constant_(m.bias, 0) | ||
|
||
def backup(self): | ||
self.old_state_dict = deepcopy(self.state_dict()) | ||
|
||
def recall(self): | ||
self.load_state_dict(self.old_state_dict) | ||
|
||
def update(self, nb_classes, freeze_old=True): | ||
single_head = [] | ||
if self.with_norm: | ||
single_head.append(nn.LayerNorm(self.embed_dim)) | ||
|
||
_fc = nn.Linear(self.embed_dim, nb_classes, bias=True) | ||
trunc_normal_(_fc.weight, std=.02) | ||
nn.init.constant_(_fc.bias, 0) | ||
single_head.append(_fc) | ||
new_head = nn.Sequential(*single_head) | ||
|
||
if freeze_old: | ||
for p in self.heads.parameters(): | ||
p.requires_grad=False | ||
|
||
self.heads.append(new_head) | ||
|
||
def forward(self, x): | ||
out = [] | ||
for ti in range(len(self.heads)): | ||
fc_inp = x[ti] if self.feat_expand else x | ||
out.append(self.heads[ti](fc_inp)) | ||
out = {'logits': torch.cat(out, dim=1)} | ||
return out |
Oops, something went wrong.