output |
---|
github_document |
h3o is a system-dependency free package to interact with the H3 Geospatial Indexing system by Uber. h3o utilizes the Rust library h3o with is a pure rust implementation of H3 and does not link or use Uber's H3 C library. h3o R interface is powered by extendr and should be able to compile on any machine.
You can install the development version of h3o from GitHub with:
# install.packages("remotes")
remotes::install_github("JosiahParry/h3o")
To illustrate the basic usage, we can first create an sf object of random points.
pnts <- tibble::tibble(
x = runif(100, -5, 10),
y = runif(100, 40, 50)
) |>
sf::st_as_sf(
coords = c("x", "y"),
crs = 4326
)
h3o utilizes vctrs to create H3 class vectors so that they can work seemlessly within a tidyverse workflow.
h3o is intended to work with the sf package for geometric operations.
H3 vectors can be created from POINT
geometry columns (sfc
objects).
library(h3o)
pnts |>
dplyr::mutate(h3 = h3_from_points(geometry, 5))
#> Simple feature collection with 100 features and 1 field
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: -4.919497 ymin: 40.25333 xmax: 9.98528 ymax: 49.9593
#> Geodetic CRS: WGS 84
#> # A tibble: 100 × 2
#> geometry h3
#> * <POINT [°]> <H3>
#> 1 (2.785472 46.45577) 851f94cffffffff
#> 2 (5.259132 44.97223) 851f930ffffffff
#> 3 (8.734851 48.01969) 851f810ffffffff
#> 4 (-3.751716 49.25705) 85187193fffffff
#> 5 (9.780378 44.62055) 851ea6cbfffffff
#> 6 (7.87759 47.21568) 851f8303fffffff
#> 7 (6.871837 42.57346) 851eb6dbfffffff
#> 8 (4.450498 46.81359) 851f951bfffffff
#> 9 (0.01801486 43.70956) 8539668bfffffff
#> 10 (8.864163 44.3646) 851f9b0bfffffff
#> # ℹ 90 more rows
Additionally, H3 vectors also have an st_as_sfc()
method which lets us convert vectors of H3 cell indexes into POLYGON
s.
h3_cells <- pnts |>
dplyr::mutate(
h3 = h3_from_points(geometry, 4),
# replace geometry
geometry = sf::st_as_sfc(h3)
)
# plot the hexagons
plot(sf::st_geometry(h3_cells))
H3 cell centroids can be returned using h3_to_points()
. If sf
is avilable the results will
be returned as an sfc
(sf column) object. Otherwise it will return a list of sfg
(sf geometries).
# fetch h3 column
h3s <- h3_cells$h3
# get there centers
h3_centers <- h3_to_points(h3s)
# plot the hexagons with the centers
plot(sf::st_geometry(h3_cells))
plot(h3_centers, pch = 16, add = TRUE, col = "black")
h3o was designed with sf in mind. H3 is a geospatial indexing system so it is important to be able to go back and from from H3 and sf objects. H3 object can be created from sfc objects and vice versa.sfc objects can also be created using the sf::sf_as_sfc()
method for H3
or H3Edge
vectors.
H3Edge
vectors represent the boundaries of H3 cells. They can be created with h3_edges()
, h3_shared_edge_pairwise()
, and h3_shared_edge_sparse()
.
cell_edges <- h3_edges(h3s[1:3])
cell_edges
#> [[1]]
#> <H3Edge[6]>
#> [1] 1141f94dffffffff 1241f94dffffffff 1341f94dffffffff 1441f94dffffffff
#> [5] 1541f94dffffffff 1641f94dffffffff
#>
#> [[2]]
#> <H3Edge[6]>
#> [1] 1141f931ffffffff 1241f931ffffffff 1341f931ffffffff 1441f931ffffffff
#> [5] 1541f931ffffffff 1641f931ffffffff
#>
#> [[3]]
#> <H3Edge[6]>
#> [1] 1141f811ffffffff 1241f811ffffffff 1341f811ffffffff 1441f811ffffffff
#> [5] 1541f811ffffffff 1641f811ffffffff
We've created a list of each cell's edges. We can flatten them using flatten_edges()
.
cell_edges <- flatten_edges(cell_edges)
cell_edges
#> <H3Edge[18]>
#> [1] 1141f94dffffffff 1241f94dffffffff 1341f94dffffffff 1441f94dffffffff
#> [5] 1541f94dffffffff 1641f94dffffffff 1141f931ffffffff 1241f931ffffffff
#> [9] 1341f931ffffffff 1441f931ffffffff 1541f931ffffffff 1641f931ffffffff
#> [13] 1141f811ffffffff 1241f811ffffffff 1341f811ffffffff 1441f811ffffffff
#> [17] 1541f811ffffffff 1641f811ffffffff
These can be cast to sfc objects using its st_as_sfc()
method.
sf::st_as_sfc(cell_edges)
#> Geometry set for 18 features
#> Geometry type: LINESTRING
#> Dimension: XY
#> Bounding box: xmin: 2.395949 ymin: 44.79977 xmax: 8.827172 ymax: 48.382
#> Geodetic CRS: WGS 84
#> First 5 geometries:
#> LINESTRING (2.948007 46.49839, 3.012846 46.72299)
#> LINESTRING (2.395949 46.5394, 2.63995 46.40685)
#> LINESTRING (2.63995 46.40685, 2.948007 46.49839)
#> LINESTRING (2.767743 46.85578, 2.458902 46.76373)
#> LINESTRING (3.012846 46.72299, 2.767743 46.85578)
Additionally, you can get the vertexes of H3 cell indexes using h3_to_vertexes()
which returns an sfc_MULTIPOINT
.
h3_to_vertexes(h3s)
#> Geometry set for 100 features
#> Geometry type: MULTIPOINT
#> Dimension: XY
#> Bounding box: xmin: -5.510812 ymin: 39.78466 xmax: 10.22827 ymax: 50.12141
#> Geodetic CRS: WGS 84
#> First 5 geometries:
#> MULTIPOINT ((2.458902 46.76373), (2.395949 46.5...
#> MULTIPOINT ((4.818449 45.17055), (4.748771 44.9...
#> MULTIPOINT ((8.243388 48.3043), (8.158854 48.08...
#> MULTIPOINT ((-3.697215 49.31703), (-4.01933 49....
#> MULTIPOINT ((9.666362 44.93792), (9.580722 44.7...
Since h3o is written in Rust, it is very fast.
Creating polygons
h3_strs <- as.character(h3s)
bench::mark(
h3o = sf::st_as_sfc(h3s),
h3jsr = h3jsr::cell_to_polygon(h3_strs)
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 h3o 415.9µs 466.91µs 1985. 9.85KB 0
#> 2 h3jsr 7.39ms 8.16ms 118. 77.18KB 4.36
Converting polygons to H3 cells:
nc <- sf::st_read(system.file("gpkg/nc.gpkg", package = "sf"), quiet = TRUE) |>
sf::st_transform(4326) |>
sf::st_geometry()
bench::mark(
h3o = sfc_to_cells(nc, 5, "centroid"),
h3jsr = h3jsr::polygon_to_cells(nc, 5),
check = FALSE
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 h3o 4.14ms 4.63ms 214. 6KB 0
#> 2 h3jsr 28.13ms 29.28ms 33.9 18.6KB 0
Converting points to cells
bench::mark(
h3o = h3_from_points(pnts$geometry, 3),
h3jsr = h3jsr::point_to_cell(pnts$geometry, 3),
check = FALSE
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 h3o 140.14µs 168.88µs 4951. 848B 2.20
#> 2 h3jsr 2.04ms 2.42ms 400. 55.6KB 2.27
Retrieve edges
bench::mark(
h3o = h3_edges(h3s),
h3jsr = h3jsr::get_udedges(h3_strs),
check = FALSE
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 h3o 762.89µs 875.99µs 995. 848B 2.55
#> 2 h3jsr 1.79ms 2.37ms 381. 46.1KB 0
Get origins and destinations from edges.
# get edges for a single location
eds <- h3_edges(h3s[1])[[1]]
# strings for h3jsr
eds_str <- as.character(eds)
bench::mark(
h3o = h3_edge_cells(eds),
h3jsr = h3jsr::get_udends(eds_str),
check = FALSE
)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 h3o 23.5µs 26.8µs 35917. 0B 11.9
#> 2 h3jsr 458.3µs 505µs 1782. 1.36KB 2.05