Skip to content

JudahGazit/unsupervised-learning-course

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

unsupervised-learning-course

Unsupervised Learning Course - Final work, Winter 2020, BIU
pdf file: https://github.com/JudahGazit/unsupervised-learning-course/blob/master/unsupervised.pdf

Project Structure:

├── README.md // YOU ARE HERE
├── requirements.txt // standard python requirements file
├── app.py // the main method for the python code
├── unsupervised.pdf // the paper summarizing the work that was done
├── data
│   └── netflix
│       └── stage.json // the result of the data processing
│       └── // original datasets used for the data processing
├── latex
│   └── // contains all the raw files and images making the pdf file
└── python_code // all the python code is here
    ├── config.py
    ├── data_prep
    |   └── // contains the code and the main for the data processing and preparation
    └── learning
        ├── data_loader.py
        ├── clustering
        │   └── // contains different algorithms used to cluster the data
        ├── graph
        │   ├── edges_logics
        │   │   └── // contains different logics used to construct the graph's edges from the data
        │   ├── graph.py
        └── stats
            └── // contains the hypothesis testing and the statistical analysis of the data and the clustering

Data was taken from:

  1. https://www.kaggle.com/shivamb/netflix-shows/tasks?taskId=123
  2. https://www.kaggle.com/ashirwadsangwan/imdb-dataset
  3. https://www.kaggle.com/unanimad/the-oscar-award

The IMDB dataset couldn't be uploaded to this repository due to it's size, so in order to rerun the entire data preparation process you need to download it manually and place it in the data/netflix/ folder

The results of the data preparation process are saved in stage.json so rerunning the entire workflow is unnecessary.

About

Unsupervised Learning Course - Final work, Winter 2020, BIU

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages