Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve allcombinations docstring + minor cleanups after #3256 #3276

Merged
merged 6 commits into from
Jan 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,11 @@
its parent
([#3273](https://github.com/JuliaData/DataFrames.jl/pull/3273))

## Performance improvements

* `dropmissing` creates new columns in a single pass if `disallowmissing=true`
([#3256](https://github.com/JuliaData/DataFrames.jl/pull/3256))

# DataFrames.jl v1.4.4 Patch Release Notes

## Bug fixes
Expand Down
15 changes: 11 additions & 4 deletions src/abstractdataframe/abstractdataframe.jl
Original file line number Diff line number Diff line change
Expand Up @@ -985,11 +985,19 @@ julia> dropmissing(df, [:x, :y])

# What column indices should disallowmissing be applied to
cols_inds = BitSet(index(df)[cols])

use_threads = Threads.nthreads() > 1 && ncol(df) > 1 && length(selected_rows) >= 100_000
@sync for (i, col) in enumerate(eachcol(df))
@spawn_or_run use_threads if disallowmissing && (i in cols_inds)
new_columns[i] = Missings.disallowmissing(Base.view(col, selected_rows))
@spawn_or_run use_threads if disallowmissing && (i in cols_inds) &&
(Missing <: eltype(col) && eltype(col) !== Any)
# Perform this path only if column eltype allows missing values
# except Any, as nonmissingtype(Any) == Any.
# Under these conditions Missings.disallowmissing must allocate
# a fresh column
col_sel = Base.view(col, selected_rows)
new_col = Missings.disallowmissing(col_sel)
@assert new_col !== col_sel
new_columns[i] = new_col
else
new_columns[i] = col[selected_rows]
end
Expand Down Expand Up @@ -3421,4 +3429,3 @@ function Base.iterate(itr::Iterators.PartitionIterator{<:AbstractDataFrame}, sta
r = min(state + itr.n - 1, last_idx)
return view(itr.c, state:r, :), r + 1
end

1 change: 1 addition & 0 deletions src/dataframe/dataframe.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1472,6 +1472,7 @@ allcombinations(::Type{DataFrame}, pairs::Pair{<:AbstractString, <:Any}...) =
allcombinations(DataFrame; kwargs...)
Create a `DataFrame` from all combinations of values in passed arguments.
The first passed values vary fastest.
Arguments associating a column name with values to expand can be specified
either as `Pair`s passed as positional arguments, or as keyword arguments.
Expand Down
22 changes: 14 additions & 8 deletions test/data.jl
Original file line number Diff line number Diff line change
Expand Up @@ -173,12 +173,11 @@ end
@test isempty(dropmissing!(DataFrame())) && dropmissing!(DataFrame()) isa DataFrame
df = DataFrame(a=1:3, b=4:6)
dfv = @view df[:, 2:1]
# TODO: re-enable after https://github.com/JuliaData/DataFrames.jl/issues/3272 is resolved
# @test isempty(dropmissing(dfv)) && dropmissing(dfv) isa DataFrame
@test isempty(dropmissing(dfv)) && dropmissing(dfv) isa DataFrame
@test_throws ArgumentError dropmissing!(dfv)
@test_throws ArgumentError dropmissing(df1, [])
@test_throws ArgumentError dropmissing!(df1, [])
@test_throws ArgumentError dropmissing(df1, [])
@test_throws ArgumentError dropmissing!(df1, [])

df = DataFrame(a=[1, missing, 3])
sdf = view(df, :, :)
@test dropmissing(sdf) == DataFrame(a=[1, 3])
Expand Down Expand Up @@ -248,19 +247,26 @@ end
# Deterministic drop mask: IF remainder of index position divided by 10 == column index THEN missing
for i in 1:ncol(df)
missing_mask = (eachindex(df[!, i]) .% 10) .== i
df[missing_mask, i] .= missing
df[missing_mask, i] .= missing
end

notmissing_rows = [i for i in 1:N_rows if i % 10 == 0 || i % 10 > ncol(df)]
@test dropmissing(df) ≅ df[notmissing_rows, :]

cols = [:x1, :x2]
notmissing_rows = [i for i in 1:N_rows if i % 10 == 0 || i % 10 > length(cols)]
returned = dropmissing(df, cols)
@test returned ≅ df[notmissing_rows, :]
@test eltype(returned[:, cols[1]]) == nonmissingtype(eltype(df[:, cols[1]]))
@test eltype(returned[:, cols[2]]) == nonmissingtype(eltype(df[:, cols[2]]))
@test eltype(returned[:, ncol(df)]) == eltype(df[:, ncol(df)])

# correct handling of not propagating views
df = DataFrame(a=1:3, b=Any[11, missing, 13])
df2 = dropmissing(df)
@test df2 == DataFrame(a=[1, 3], b=[11, 13])
@test df2.a isa Vector{Int}
@test df2.b isa Vector{Any}
end

@testset "deleteat! https://github.com/JuliaLang/julia/pull/41646 bug workaround" begin
Expand Down