Skip to content

Commit

Permalink
support user-specified permutation in CHOLMOD factorizations, change …
Browse files Browse the repository at this point in the history
…β optional argument to a shift keyword arg, some code consolidation; change & to new Ref syntax in cholmod
  • Loading branch information
stevengj committed Apr 16, 2015
1 parent f443d48 commit 501e6dd
Show file tree
Hide file tree
Showing 5 changed files with 90 additions and 103 deletions.
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -132,6 +132,10 @@ Library improvements

* Added generic Cholesky factorization, and the Cholesky factorization is now parametrized on the matrix type ([#7236]).

* Sparse `cholfact` and `ldltfact` functions now accept a `perm` keyword
for user-provided permutations and a `shift` keyword to factorize
a shifted matrix ([#10844]).

* Add `svds` for sparse truncated SVD. ([#9425])

* Symmetric and Hermitian immutables are now parametrized on matrix type ([#7992]).
Expand Down Expand Up @@ -1334,3 +1338,5 @@ Too numerous to mention.
[#10543]: https://github.com/JuliaLang/julia/issues/10543
[#10659]: https://github.com/JuliaLang/julia/issues/10659
[#10709]: https://github.com/JuliaLang/julia/issues/10709
[#10747]: https://github.com/JuliaLang/julia/issues/10747
[#10844]: https://github.com/JuliaLang/julia/issues/10844
3 changes: 3 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -439,6 +439,9 @@ end
@deprecate dlsym_e Libdl.dlsym_e
@deprecate find_library Libdl.find_library

@deprecate cholfact(A::AbstractMatrix, β::Number) cholfact(A, shift=β)
@deprecate ldltfact(A::AbstractMatrix, β::Number) ldltfact(A, shift=β)

# 0.4 discontinued functions

@noinline function subtypetree(x::DataType, level=-1)
Expand Down
144 changes: 55 additions & 89 deletions base/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,8 @@ const common_final_ll = (1:4) + cholmod_com_offsets[7]
const common_print = (1:4) + cholmod_com_offsets[13]
const common_itype = (1:4) + cholmod_com_offsets[18]
const common_dtype = (1:4) + cholmod_com_offsets[19]
const common_nmethods = (1:4) + cholmod_com_offsets[15]
const common_postorder = (1:4) + cholmod_com_offsets[17]

## macro to generate the name of the C function according to the integer type
macro cholmod_name(nm,typ) string("cholmod_", eval(typ) == SuiteSparse_long ? "l_" : "", nm) end
Expand Down Expand Up @@ -283,7 +285,7 @@ function allocate_dense(nrow::Integer, ncol::Integer, d::Integer, ::Type{Complex
d
end

free_dense!{T}(p::Ptr{C_Dense{T}}) = ccall((:cholmod_l_free_dense, :libcholmod), Cint, (Ptr{Ptr{C_Dense{T}}}, Ptr{Void}), &p, common(Cint))
free_dense!{T}(p::Ptr{C_Dense{T}}) = ccall((:cholmod_l_free_dense, :libcholmod), Cint, (Ref{Ptr{C_Dense{T}}}, Ptr{Void}), p, common(Cint))

function zeros{T<:VTypes}(m::Integer, n::Integer, ::Type{T})
d = Dense(ccall((:cholmod_l_zeros, :libcholmod), Ptr{C_Dense{T}},
Expand Down Expand Up @@ -568,18 +570,18 @@ for Ti in IndexTypes
A
end

function sdmult!{Tv<:VTypes}(A::Sparse{Tv,$Ti}, transpose::Bool, α::Tv, β::Tv, X::Dense{Tv}, Y::Dense{Tv})
function sdmult!{Tv<:VTypes}(A::Sparse{Tv,$Ti}, transpose::Bool, α::Number, β::Number, X::Dense{Tv}, Y::Dense{Tv})
m, n = size(A)
nc = transpose ? m : n
nr = transpose ? n : m
if nc != size(X, 1)
throw(DimensionMismatch("incompatible dimensions, $nc and $(size(X,1))"))
end
@isok ccall((@cholmod_name("sdmult", $Ti),:libcholmod), Cint,
(Ptr{C_Sparse{Tv,$Ti}}, Cint, Ptr{Cdouble}, Ptr{Cdouble},
Ptr{C_Dense{Tv}}, Ptr{C_Dense{Tv}}, Ptr{UInt8}),
A.p, transpose, &α, &β,
X.p, Y.p, common($Ti))
(Ptr{C_Sparse{Tv,$Ti}}, Cint,
Ref{Complex128}, Ref{Complex128},
Ptr{C_Dense{Tv}}, Ptr{C_Dense{Tv}}, Ptr{UInt8}),
A.p, transpose, α, β, X.p, Y.p, common($Ti))
Y
end

Expand All @@ -605,7 +607,7 @@ for Ti in IndexTypes
end

# cholmod_cholesky.h
# For analyze, factorize and factorize_p, the Common argument must be
# For analyze, analyze_p, and factorize_p!, the Common argument must be
# supplied in order to control if the factorization is LLt or LDLt
function analyze{Tv<:VTypes}(A::Sparse{Tv,$Ti}, cmmn::Vector{UInt8})
f = Factor(ccall((@cholmod_name("analyze", $Ti),:libcholmod), Ptr{C_Factor{Tv,$Ti}},
Expand All @@ -614,18 +616,22 @@ for Ti in IndexTypes
finalizer(f, free!)
f
end
function factorize!{Tv<:VTypes}(A::Sparse{Tv,$Ti}, F::Factor{Tv,$Ti}, cmmn::Vector{UInt8})
@isok ccall((@cholmod_name("factorize", $Ti),:libcholmod), Cint,
(Ptr{C_Sparse{Tv,$Ti}}, Ptr{C_Factor{Tv,$Ti}}, Ptr{UInt8}),
A.p, F.p, cmmn)
F
function analyze_p{Tv<:VTypes}(A::Sparse{Tv,$Ti}, perm::Vector{$Ti},
cmmn::Vector{UInt8})
length(perm) != size(A,1) && throw(BoundsError())
f = Factor(ccall((@cholmod_name("analyze_p", $Ti),:libcholmod), Ptr{C_Factor{Tv,$Ti}},
(Ptr{C_Sparse{Tv,$Ti}}, Ptr{$Ti}, Ptr{$Ti}, Csize_t, Ptr{UInt8}),
A.p, perm, C_NULL, 0, cmmn))
finalizer(f, free!)
f
end
function factorize_p!{Tv<:VTypes}(A::Sparse{Tv,$Ti}, β::Tv, fset::Vector{$Ti}, F::Factor{Tv,$Ti}, cmmn::Vector{UInt8})
function factorize_p!{Tv<:VTypes}(A::Sparse{Tv,$Ti}, β::Real, F::Factor{Tv,$Ti}, cmmn::Vector{UInt8})
# note that β is passed as a complex number (double beta[2]),
# but the CHOLMOD manual says that only beta[0] (real part) is used
@isok ccall((@cholmod_name("factorize_p", $Ti),:libcholmod), Cint,
(Ptr{C_Sparse{Tv,$Ti}}, Ptr{Cdouble}, Ptr{$Ti}, Csize_t,
(Ptr{C_Sparse{Tv,$Ti}}, Ref{Complex128}, Ptr{$Ti}, Csize_t,
Ptr{C_Factor{Tv,$Ti}}, Ptr{UInt8}),
A.p, &β, fset, length(fset),
F.p, cmmn)
A.p, β, C_NULL, 0, F.p, cmmn)
F
end

Expand Down Expand Up @@ -984,42 +990,45 @@ Ac_mul_B(A::Sparse, B::VecOrMat) = Ac_mul_B(A, Dense(B))


## Factorization methods
function cholfact(A::Sparse)

function fact_{Tv<:VTypes,Ti<:ITypes,Ti2<:Integer}(A::Sparse{Tv,Ti}, cm::Array{UInt8};
shift::Real=0.0,
perm::AbstractVector{Ti2}=Int[],
postorder::Bool=true,
userperm_only::Bool=true)
sA = unsafe_load(A.p)
sA.stype == 0 && throw(ArgumentError("sparse matrix is not symmetric/Hermitian"))

cm = common(indtype(A))
if !postorder
cm[common_postorder] = reinterpret(UInt8, [zero(Cint)])
end

# Hack! makes it a llt
cm[common_final_ll] = reinterpret(UInt8, [one(Cint)])
F = analyze(A, cm)
factorize!(A, F, cm)
s = unsafe_load(F.p)
s.minor < size(A, 1) && throw(Base.LinAlg.PosDefException(s.minor))
if isempty(perm)
F = analyze(A, cm)
else # user permutation provided
if userperm_only # use perm even if it is worse than AMD
cm[common_nmethods] = reinterpret(UInt8, [one(Cint)])
end
F = analyze_p(A, Ti[p-1 for p in perm], cm)
end

factorize_p!(A, shift, F, cm)
return F
end

function cholfact{Tv<:VTypes,Ti<:ITypes}(A::Sparse{Tv,Ti}, β::Tv)
sA = unsafe_load(A.p)
sA.stype == 0 && throw(ArgumentError("sparse matrix is not symmetric/Hermitian"))

cm = common(Ti)
function cholfact(A::Sparse; kws...)
cm = common(indtype(A))

# Hack! makes it a llt
cm[common_final_ll] = reinterpret(UInt8, [one(Cint)])

F = analyze(A, cm)
factorize_p!(A, β, Ti[0:sA.ncol - 1;], F, cm)

F = fact_(A, cm; kws...)
s = unsafe_load(F.p)
s.minor < size(A, 1) && throw(Base.LinAlg.PosDefException(s.minor))
return F
end

function ldltfact(A::Sparse)
sA = unsafe_load(A.p)
sA.stype == 0 && throw(ArgumentError("sparse matrix is not symmetric/Hermitian"))

function ldltfact(A::Sparse; kws...)
cm = common(indtype(A))

# Hack! makes it a ldlt
Expand All @@ -1028,72 +1037,29 @@ function ldltfact(A::Sparse)
# Hack! really make sure it's a ldlt by avoiding supernodal factorisation
cm[common_supernodal] = reinterpret(UInt8, [zero(Cint)])

F = analyze(A, cm)
factorize!(A, F, cm)

# Check if decomposition failed
s = unsafe_load(F.p)
s.minor < size(A, 1) && throw(Base.LinAlg.ArgumentError("matrix has one or more zero pivots"))

return F
end

function ldltfact{Tv<:VTypes,Ti<:ITypes}(A::Sparse{Tv,Ti}, β::Tv)
sA = unsafe_load(A.p)
sA.stype == 0 && throw(ArgumentError("sparse matrix is not symmetric/Hermitian"))

cm = common(Ti)

# Hack! makes it a ldlt
cm[common_final_ll] = reinterpret(UInt8, [zero(Cint)])

# Hack! really make sure it's a ldlt by avoiding supernodal factorisation
cm[common_supernodal] = reinterpret(UInt8, [zero(Cint)])

F = analyze(A, cm)
factorize_p!(A, β, Ti[0:sA.ncol - 1;], F, cm)

# Check if decomposition failed
F = fact_(A, cm; kws...)
s = unsafe_load(F.p)
s.minor < size(A, 1) && throw(Base.LinAlg.ArgumentError("matrix has one or more zero pivots"))

return F
end

cholfact{T<:VTypes}(A::Sparse{T}, β::Number) = cholfact(A, convert(T, β))
cholfact(A::SparseMatrixCSC) = cholfact(Sparse(A))
cholfact(A::SparseMatrixCSC, β::Number) = cholfact(Sparse(A), β)
cholfact{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}) = cholfact(Sparse(A))
cholfact{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}, β::Number) = cholfact(Sparse(A), β)
cholfact{Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}) = cholfact(Sparse(A))
cholfact{Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}, β::Number) = cholfact(Sparse(A), β)

ldltfact{T<:VTypes}(A::Sparse{T}, β::Number) = ldltfact(A, convert(T, β))
ldltfact(A::SparseMatrixCSC) = ldltfact(Sparse(A))
ldltfact(A::SparseMatrixCSC, β::Number) = ldltfact(Sparse(A), β)
ldltfact{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}) = ldltfact(Sparse(A))
ldltfact{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}, β::Number) = ldltfact(Sparse(A), β)
ldltfact{Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}) = ldltfact(Sparse(A))
ldltfact{Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}, β::Number) = ldltfact(Sparse(A), β)

function update!{Tv<:VTypes,Ti<:ITypes}(F::Factor{Tv,Ti}, A::Sparse{Tv,Ti})
cm = common(Ti)
s = unsafe_load(F.p)
if Bool(s.is_ll)
cm[common_final_ll] = reinterpret(UInt8, [one(Cint)]) # Hack! makes it a llt
for f in (:cholfact, :ldltfact)
@eval begin
$f(A::SparseMatrixCSC; kws...) = $f(Sparse(A); kws...)
$f{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}; kws...) = $f(Sparse(A); kws...)
$f{Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}; kws...) = $f(Sparse(A); kws...)
end
factorize!(A, F, cm)
end
function update!{Tv<:VTypes,Ti<:ITypes}(F::Factor{Tv,Ti}, A::Sparse{Tv,Ti}, β::Tv)

function update!{Tv<:VTypes,Ti<:ITypes}(F::Factor{Tv,Ti}, A::Sparse{Tv,Ti}; shift::Real=0.0)
cm = common(Ti)
s = unsafe_load(F.p)
if Bool(s.is_ll)
cm[common_final_ll] = reinterpret(UInt8, [one(Cint)]) # Hack! makes it a llt
end
factorize_p!(A, β, Ti[0:size(F, 1) - 1;], F, cm)
factorize_p!(A, shift, F, cm)
end
update!{T<:VTypes}(F::Factor{T}, A::SparseMatrixCSC{T}) = update!(F, Sparse(A))
update!{T<:VTypes}(F::Factor{T}, A::SparseMatrixCSC{T}, β::Number) = update!(F, Sparse(A), convert(T, β))
update!{T<:VTypes}(F::Factor{T}, A::SparseMatrixCSC{T}; kws...) = update!(F, Sparse(A); kws...)

## Solvers

Expand Down
14 changes: 12 additions & 2 deletions doc/stdlib/linalg.rst
Original file line number Diff line number Diff line change
Expand Up @@ -95,10 +95,15 @@ Linear algebra functions in Julia are largely implemented by calling functions f

Compute the Cholesky factorization of a dense symmetric positive (semi)definite matrix ``A`` and return either a ``Cholesky`` if ``pivot==Val{false}`` or ``CholeskyPivoted`` if ``pivot==Val{true}``. ``LU`` may be ``:L`` for using the lower part or ``:U`` for the upper part. The default is to use ``:U``. The triangular matrix can be obtained from the factorization ``F`` with: ``F[:L]`` and ``F[:U]``. The following functions are available for ``Cholesky`` objects: ``size``, ``\``, ``inv``, ``det``. For ``CholeskyPivoted`` there is also defined a ``rank``. If ``pivot==Val{false}`` a ``PosDefException`` exception is thrown in case the matrix is not positive definite. The argument ``tol`` determines the tolerance for determining the rank. For negative values, the tolerance is the machine precision.

.. function:: cholfact(A) -> CHOLMOD.Factor
.. function:: cholfact(A; shift=0, perm=Int[]) -> CHOLMOD.Factor

Compute the Cholesky factorization of a sparse positive definite matrix ``A``. A fill-reducing permutation is used. The main application of this type is to solve systems of equations with ``\``, but also the methods ``diag``, ``det``, ``logdet`` are defined. The function calls the C library CHOLMOD and many other functions from the library are wrapped but not exported.

Setting optional ``shift`` keyword argument computes the factorization
of ``A+shift*I`` instead of ``A``. If the ``perm`` argument is nonempty,
it should be a permutation of `1:size(A,1)` giving the ordering to use
(instead of CHOLMOD's default AMD ordering).

.. function:: cholfact!(A [,LU=:U [,pivot=Val{false}]][;tol=-1.0]) -> Cholesky

``cholfact!`` is the same as :func:`cholfact`, but saves space by overwriting the input ``A``, instead of creating a copy. ``cholfact!`` can also reuse the symbolic factorization from a different matrix ``F`` with the same structure when used as: ``cholfact!(F::CholmodFactor, A)``.
Expand All @@ -107,10 +112,15 @@ Linear algebra functions in Julia are largely implemented by calling functions f

Compute a factorization of a positive definite matrix ``A`` such that ``A=L*Diagonal(d)*L'`` where ``L`` is a unit lower triangular matrix and ``d`` is a vector with non-negative elements.

.. function:: ldltfact(A) -> CHOLMOD.Factor
.. function:: ldltfact(A; shift=0, perm=Int[]) -> CHOLMOD.Factor

Compute the LDLt factorization of a sparse symmetric or Hermitian matrix ``A``. A fill-reducing permutation is used. The main application of this type is to solve systems of equations with ``\``, but also the methods ``diag``, ``det``, ``logdet`` are defined. The function calls the C library CHOLMOD and many other functions from the library are wrapped but not exported.

Setting optional ``shift`` keyword argument computes the factorization
of ``A+shift*I`` instead of ``A``. If the ``perm`` argument is nonempty,
it should be a permutation of `1:size(A,1)` giving the ordering to use
(instead of CHOLMOD's default AMD ordering).

.. function:: qr(A [,pivot=Val{false}][;thin=true]) -> Q, R, [p]

Compute the (pivoted) QR factorization of ``A`` such that either ``A = Q*R`` or ``A[:,p] = Q*R``. Also see ``qrfact``. The default is to compute a thin factorization. Note that ``R`` is not extended with zeros when the full ``Q`` is requested.
Expand Down
26 changes: 14 additions & 12 deletions test/sparsedir/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -98,13 +98,15 @@ chma = ldltfact(A) # LDL' form
@test unsafe_load(chma.p).is_ll == 0 # check that it is in fact an LDLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(ldltfact(A, perm=1:size(A,1))) > nnz(chma)

chma = cholfact(A) # LL' form
@test CHOLMOD.isvalid(chma)
@test unsafe_load(chma.p).is_ll == 1 # check that it is in fact an LLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(chma) == 489
@test nnz(cholfact(A, perm=1:size(A,1))) > nnz(chma)

#lp_afiro example
afiro = CHOLMOD.Sparse(27, 51,
Expand Down Expand Up @@ -360,13 +362,13 @@ for elty in (Float64, Complex{Float64})
# Factor
@test_throws ArgumentError cholfact(A1)
@test_throws Base.LinAlg.PosDefException cholfact(A1 + A1' - 2eigmax(full(A1 + A1'))I)
@test_throws Base.LinAlg.PosDefException cholfact(A1 + A1', -2eigmax(full(A1 + A1')))
@test_throws Base.LinAlg.PosDefException cholfact(A1 + A1', shift=-2eigmax(full(A1 + A1')))
@test_throws ArgumentError ldltfact(A1 + A1' - 2real(A1[1,1])I)
@test_throws ArgumentError ldltfact(A1 + A1', -2real(A1[1,1]))
@test_throws ArgumentError ldltfact(A1 + A1', shift=-2real(A1[1,1]))
@test_throws ArgumentError cholfact(A1)
@test_throws ArgumentError cholfact(A1, 1.0)
@test_throws ArgumentError cholfact(A1, shift=1.0)
@test_throws ArgumentError ldltfact(A1)
@test_throws ArgumentError ldltfact(A1, 1.0)
@test_throws ArgumentError ldltfact(A1, shift=1.0)
F = cholfact(A1pd)
tmp = IOBuffer()
show(tmp, F)
Expand All @@ -391,16 +393,16 @@ for elty in (Float64, Complex{Float64})
if elty <: Real
@test CHOLMOD.issym(Sparse(A1pd, 0))
@test CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
@test CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L), 2)) == CHOLMOD.Sparse(cholfact(A1pd, 2))
@test CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L), shift=2)) == CHOLMOD.Sparse(cholfact(A1pd, shift=2))
@test CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
@test CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L), 2)) == CHOLMOD.Sparse(ldltfact(A1pd, 2))
@test CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L), shift=2)) == CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
else
@test !CHOLMOD.issym(Sparse(A1pd, 0))
@test CHOLMOD.ishermitian(Sparse(A1pd, 0))
@test CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
@test CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L), 2)) == CHOLMOD.Sparse(cholfact(A1pd, 2))
@test CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L), shift=2)) == CHOLMOD.Sparse(cholfact(A1pd, shift=2))
@test CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
@test CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L), 2)) == CHOLMOD.Sparse(ldltfact(A1pd, 2))
@test CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L), shift=2)) == CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
end


Expand All @@ -414,17 +416,17 @@ for elty in (Float64, Complex{Float64})
@test size(F, 3) == 1
@test_throws ArgumentError size(F, 0)

F = cholfact(A1pdSparse, 2)
F = cholfact(A1pdSparse, shift=2)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty, CHOLMOD.SuiteSparse_long})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, 2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

F = ldltfact(A1pd)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty, CHOLMOD.SuiteSparse_long})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

F = ldltfact(A1pdSparse, 2)
F = ldltfact(A1pdSparse, shift=2)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty, CHOLMOD.SuiteSparse_long})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, 2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

@test isa(CHOLMOD.factor_to_sparse!(F), CHOLMOD.Sparse)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.factor_to_sparse!(F)
Expand Down

0 comments on commit 501e6dd

Please sign in to comment.