Skip to content

Commit

Permalink
spmatmul sparse matrix multiplication - performance improvements (#30372
Browse files Browse the repository at this point in the history
)

* General performance improvements for sparse matmul
Details for the polyalgorithm are in: #30372

(cherry picked from commit fae262c)
  • Loading branch information
KlausC authored and KristofferC committed Jan 11, 2019
1 parent e3af2c1 commit 7d63456
Show file tree
Hide file tree
Showing 2 changed files with 70 additions and 30 deletions.
97 changes: 69 additions & 28 deletions stdlib/SparseArrays/src/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -146,63 +146,104 @@ end
*(A::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::Adjoint{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))
*(A::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}, B::Transpose{<:Any,<:SparseMatrixCSC{Tv,Ti}}) where {Tv,Ti} = spmatmul(copy(A), copy(B))

function spmatmul(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti};
sortindices::Symbol = :sortcols) where {Tv,Ti}
# Gustavsen's matrix multiplication algorithm revisited.
# The result rowval vector is already sorted by construction.
# The auxiliary Vector{Ti} xb is replaced by a Vector{Bool} of same length.
# The optional argument controlling a sorting algorithm is obsolete.
# depending on expected execution speed the sorting of the result column is
# done by a quicksort of the row indices or by a full scan of the dense result vector.
# The last is faster, if more than ≈ 1/32 of the result column is nonzero.
# TODO: extend to SparseMatrixCSCUnion to allow for SubArrays (view(X, :, r)).
function spmatmul(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
mA, nA = size(A)
mB, nB = size(B)
nA==mB || throw(DimensionMismatch())
nB = size(B, 2)
nA == size(B, 1) || throw(DimensionMismatch())

colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
# TODO: Need better estimation of result space
nnzC = min(mA*nB, length(nzvalA) + length(nzvalB))
rowvalA = rowvals(A); nzvalA = nonzeros(A)
rowvalB = rowvals(B); nzvalB = nonzeros(B)
nnzC = max(estimate_mulsize(mA, nnz(A), nA, nnz(B), nB) * 11 ÷ 10, mA)
colptrC = Vector{Ti}(undef, nB+1)
rowvalC = Vector{Ti}(undef, nnzC)
nzvalC = Vector{Tv}(undef, nnzC)
nzpercol = nnzC ÷ max(nB, 1)

@inbounds begin
ip = 1
xb = zeros(Ti, mA)
x = zeros(Tv, mA)
xb = fill(false, mA)
for i in 1:nB
if ip + mA - 1 > nnzC
resize!(rowvalC, nnzC + max(nnzC,mA))
resize!(nzvalC, nnzC + max(nnzC,mA))
nnzC = length(nzvalC)
nnzC += max(mA, nnzC>>2)
resize!(rowvalC, nnzC)
resize!(nzvalC, nnzC)
end
colptrC[i] = ip
for jp in colptrB[i]:(colptrB[i+1] - 1)
colptrC[i] = ip0 = ip
k0 = ip - 1
for jp in nzrange(B, i)
nzB = nzvalB[jp]
j = rowvalB[jp]
for kp in colptrA[j]:(colptrA[j+1] - 1)
for kp in nzrange(A, j)
nzC = nzvalA[kp] * nzB
k = rowvalA[kp]
if xb[k] != i
if xb[k]
nzvalC[k+k0] += nzC
else
nzvalC[k+k0] = nzC
xb[k] = true
rowvalC[ip] = k
ip += 1
xb[k] = i
x[k] = nzC
else
x[k] += nzC
end
end
end
for vp in colptrC[i]:(ip - 1)
nzvalC[vp] = x[rowvalC[vp]]
if ip > ip0
if prefer_sort(ip-k0, mA)
# in-place sort of indices. Effort: O(nnz*ln(nnz)).
sort!(rowvalC, ip0, ip-1, QuickSort, Base.Order.Forward)
for vp = ip0:ip-1
k = rowvalC[vp]
xb[k] = false
nzvalC[vp] = nzvalC[k+k0]
end
else
# scan result vector (effort O(mA))
for k = 1:mA
if xb[k]
xb[k] = false
rowvalC[ip0] = k
nzvalC[ip0] = nzvalC[k+k0]
ip0 += 1
end
end
end
end
end
colptrC[nB+1] = ip
end

deleteat!(rowvalC, colptrC[end]:length(rowvalC))
deleteat!(nzvalC, colptrC[end]:length(nzvalC))
resize!(rowvalC, ip - 1)
resize!(nzvalC, ip - 1)

# The Gustavson algorithm does not guarantee the product to have sorted row indices.
Cunsorted = SparseMatrixCSC(mA, nB, colptrC, rowvalC, nzvalC)
C = SparseArrays.sortSparseMatrixCSC!(Cunsorted, sortindices=sortindices)
# This modification of Gustavson algorithm has sorted row indices
C = SparseMatrixCSC(mA, nB, colptrC, rowvalC, nzvalC)
return C
end

# estimated number of non-zeros in matrix product
# it is assumed, that the non-zero indices are distributed independently and uniformly
# in both matrices. Over-estimation is possible if that is not the case.
function estimate_mulsize(m::Integer, nnzA::Integer, n::Integer, nnzB::Integer, k::Integer)
p = (nnzA / (m * n)) * (nnzB / (n * k))
p >= 1 ? m*k : p > 0 ? Int(ceil(-expm1(log1p(-p) * n)*m*k)) : 0 # (1-(1-p)^n)*m*k
end

# determine if sort! shall be used or the whole column be scanned
# based on empirical data on i7-3610QM CPU
# measuring runtimes of the scanning and sorting loops of the algorithm.
# The parameters 6 and 3 might be modified for different architectures.
prefer_sort(nz::Integer, m::Integer) = m > 6 && 3 * ilog2(nz) * nz < m

# minimal number of bits required to represent integer; ilog2(n) >= log2(n)
ilog2(n::Integer) = sizeof(n)<<3 - leading_zeros(n)

# Frobenius dot/inner product: trace(A'B)
function dot(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S1,S2}
m, n = size(A)
Expand Down
3 changes: 1 addition & 2 deletions stdlib/SparseArrays/test/sparse.jl
Original file line number Diff line number Diff line change
Expand Up @@ -325,8 +325,7 @@ end
a = sprand(10, 5, 0.7)
b = sprand(5, 15, 0.3)
@test maximum(abs.(a*b - Array(a)*Array(b))) < 100*eps()
@test maximum(abs.(SparseArrays.spmatmul(a,b,sortindices=:sortcols) - Array(a)*Array(b))) < 100*eps()
@test maximum(abs.(SparseArrays.spmatmul(a,b,sortindices=:doubletranspose) - Array(a)*Array(b))) < 100*eps()
@test maximum(abs.(SparseArrays.spmatmul(a,b) - Array(a)*Array(b))) < 100*eps()
f = Diagonal(rand(5))
@test Array(a*f) == Array(a)*f
@test Array(f*b) == f*Array(b)
Expand Down

0 comments on commit 7d63456

Please sign in to comment.