Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

memory confusion calling dlasd4 #2340

Closed
alanedelman opened this issue Feb 17, 2013 · 32 comments
Closed

memory confusion calling dlasd4 #2340

alanedelman opened this issue Feb 17, 2013 · 32 comments
Labels
bug Indicates an unexpected problem or unintended behavior upstream The issue is with an upstream dependency, e.g. LLVM
Milestone

Comments

@alanedelman
Copy link
Contributor

I'm now progressing from #2267 writing my fourth lapack call,
and I need to compute the singular values of a broken arrow matrix efficiently

If d and z are vectors of the same size, I want
svd( [diagm(d) z]) efficiently

I'm plugging in the little known dlasd4! and I get all the singular values correctly
except the largest one, which just returns d[n]

Sorry, if I'm just not getting pointers right or if I need to copy data, or somehow
my workspace is too small, but can anyone help?

The problem is likely to be pilot error on my part -- my fault as all these pointers
mystify me. But I haven't ruled out julia or lapack yet.
If it is lapack (which I doubt) the author of this code is in town tomorrow
(Monday 2/18) and i can consult with him.

const liblapack = Base.liblapack_name
import Base.BlasInt

## (BA) Broken arrow - singular values
for (lasd4, elty) in
    ((:dlasd4_,:Float64),
     (:slasd4_,:Float32))
    @eval begin
        function lasd4!(i::Integer, dv::Vector{$elty}, zv::Vector{$elty})
            n = length(dv)
            # should we sort dv, and sort the corresponding z??
            if length(zv) != n throw(LapackDimMisMatch("lasd4!")) end
            if ~(1<=i<=n) throw(LapackDimMisMatch("lasd4!")) end
            rho =Array($elty,1)

            rho[1]=sum(zv.^2)
            zv=zv/sqrt(rho[1])  #lasd4 requires a unit vector
            sigma=Array($elty,1)
            z=Array($elty,n)
            delta=Array($elty,n)
            work=Array($elty,n)
            info = Array(BlasInt, 1)

 #SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
            ccall(($(string(lasd4)),liblapack), Void,
                  (Ptr{BlasInt},Ptr{BlasInt},Ptr{$elty},Ptr{$elty},
                   Ptr{$elty},Ptr{$elty},Ptr{$elty},
                   Ptr{$elty},Ptr{BlasInt}),
                   &n,&i,dv,zv,
                   delta,rho,sigma,
                   work,info)

            if info[1] != 0 throw(LapackException(info[1])) end
            sigma
        end
    end
end

svdvals(a,z) = [lasd4!(i,a,z)[1] for i=1:length(a)]
svdmax(a,z)= lasd4!(length(a),a,z)

Bug example

julia> z=v=[.1:.1:.5]
julia> [svdmax(v,z) max(svd( [diagm(v) z])[2]) v[end]]
1x3 Float64 Array:
 0.5  0.858768  0.5

The answer should be .858... but instead pulling the memory from v[end]
On occasion it does give the right answer.

@andreasnoack
Copy link
Member

I think the problem is OpenBLAS. If I use the version from vecLib I get the correct answer. I also did a test in Fortran where OpenBLAS returns NaN.

@pao
Copy link
Member

pao commented Feb 17, 2013

cc @xianyi

@alanedelman
Copy link
Contributor Author

odd that openblas would mess up the largest singular value and not the rest

@ViralBShah
Copy link
Member

@andreasnoackjensen Could you post your Fortran code in a gist? It would probably help @xianyi narrow it down.

@andreasnoack
Copy link
Member

I am confused. I have tried to test this on Ubuntu as well and maybe you should ask the LAPACK author about this. Please have a look at https://gist.github.com/andreasnoackjensen/4976070. Maybe the common error factor is a development version of LAPACK, but I don't know how to get the exact snapshot dates for the LAPACK code.

@alanedelman
Copy link
Contributor Author

Actually I checked with Ming Gu who told me that Ren Cang Li was the author.

I am enclosing what he said was the correct code, and he said there was a bug fix at some point.
Can we see if this version works better?

It's possible that I'm one of the first customers of this code :-)

      SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            I, INFO, N
      DOUBLE PRECISION   RHO, SIGMA
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), DELTA( * ), WORK( * ), Z( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXIT
      PARAMETER          ( MAXIT = 60 )
      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
     $                   THREE = 3.0D+0, FOUR = 4.0D+0, EIGHT = 8.0D+0,
     $                   TEN = 10.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            ORGATI, SWTCH, SWTCH3, GEOMAVG
      INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
      DOUBLE PRECISION   A, B, C, DELSQ, DELSQ2, SQ2, DPHI, DPSI, DTIIM,
     $                   DTIIP, DTIPSQ, DTISQ, DTNSQ, DTNSQ1, DW, EPS,
     $                   ERRETM, ETA, PHI, PREW, PSI, RHOINV, SGLB,
     $                   SGUB, TAU, TAU2, TEMP, TEMP1, TEMP2, W
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   DD( 3 ), ZZ( 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAED6, DLASD5
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Since this routine is called in an inner loop, we do no argument
*     checking.
*
*     Quick return for N=1 and 2.
*
      INFO = 0
      IF( N.EQ.1 ) THEN
*
*        Presumably, I=1 upon entry
*
         SIGMA = SQRT( D( 1 )*D( 1 )+RHO*Z( 1 )*Z( 1 ) )
         DELTA( 1 ) = ONE
         WORK( 1 ) = ONE
         RETURN
      END IF
      IF( N.EQ.2 ) THEN
         CALL DLASD5( I, D, Z, DELTA, RHO, SIGMA, WORK )
         RETURN
      END IF
*
*     Compute machine epsilon
*
      EPS = DLAMCH( 'Epsilon' )
      RHOINV = ONE / RHO
*
*     The case I = N
*
      IF( I.EQ.N ) THEN
*
*        Initialize some basic variables
*
         II = N - 1
         NITER = 1
*
*        Calculate initial guess
*
         TEMP = RHO / TWO
*
*        If ||Z||_2 is not one, then TEMP should be set to
*        RHO * ||Z||_2^2 / TWO
*
         TEMP1 = TEMP / ( D( N )+SQRT( D( N )*D( N )+TEMP ) )
         DO 10 J = 1, N
            WORK( J ) = D( J ) + D( N ) + TEMP1
            DELTA( J ) = ( D( J )-D( N ) ) - TEMP1
   10    CONTINUE
*
         PSI = ZERO
         DO 20 J = 1, N - 2
            PSI = PSI + Z( J )*Z( J ) / ( DELTA( J )*WORK( J ) )
   20    CONTINUE
*
         C = RHOINV + PSI
         W = C + Z( II )*Z( II ) / ( DELTA( II )*WORK( II ) ) +
     $       Z( N )*Z( N ) / ( DELTA( N )*WORK( N ) )
*
         IF( W.LE.ZERO ) THEN
            TEMP1 = SQRT( D( N )*D( N )+RHO )
            TEMP = Z( N-1 )*Z( N-1 ) / ( ( D( N-1 )+TEMP1 )*
     $             ( D( N )-D( N-1 )+RHO / ( D( N )+TEMP1 ) ) ) +
     $             Z( N )*Z( N ) / RHO
*
*           The following TAU2 is to approximate
*           SIGMA_n^2 - D( N )*D( N )
*
            IF( C.LE.TEMP ) THEN
               TAU = RHO
            ELSE
               DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
               A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
               B = Z( N )*Z( N )*DELSQ
               IF( A.LT.ZERO ) THEN
                  TAU2 = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
               ELSE
                  TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
               END IF
            END IF
*
*           It can be proved that
*               D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO
*
         ELSE
            DELSQ = ( D( N )-D( N-1 ) )*( D( N )+D( N-1 ) )
            A = -C*DELSQ + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
            B = Z( N )*Z( N )*DELSQ
*
*           The following TAU2 is to approximate
*           SIGMA_n^2 - D( N )*D( N )
*
            IF( A.LT.ZERO ) THEN
               TAU2 = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
            ELSE
               TAU2 = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
            END IF
*
*           It can be proved that
*           D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2
*
         END IF
*
*        The following TAU is to approximate SIGMA_n - D( N )
*
         TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) )
*
         SIGMA = D( N ) + TAU
         DO 30 J = 1, N
            DELTA( J ) = ( D( J )-D( N ) ) - TAU
            WORK( J ) = D( J ) + D( N ) + TAU
   30    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 40 J = 1, II
            TEMP = Z( J ) / ( DELTA( J )*WORK( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   40    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TEMP = Z( N ) / ( DELTA( N )*WORK( N ) )
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $          + ABS( TAU2 )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
*
*        Calculate the new step
*
         NITER = NITER + 1
         DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
         DTNSQ = WORK( N )*DELTA( N )
         C = W - DTNSQ1*DPSI - DTNSQ*DPHI
         A = ( DTNSQ+DTNSQ1 )*W - DTNSQ*DTNSQ1*( DPSI+DPHI )
         B = DTNSQ*DTNSQ1*W
         IF( C.LT.ZERO )
     $      C = ABS( C )
         IF( C.EQ.ZERO ) THEN
            ETA = RHO - SIGMA*SIGMA
         ELSE IF( A.GE.ZERO ) THEN
            ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
         ELSE
            ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         IF( W*ETA.GT.ZERO )
     $      ETA = -W / ( DPSI+DPHI )
         TEMP = ETA - DTNSQ
         IF( TEMP.GT.RHO )
     $      ETA = RHO + DTNSQ
*
         ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
         TAU = TAU + ETA
         SIGMA = SIGMA + ETA
*
         DO 50 J = 1, N
            DELTA( J ) = DELTA( J ) - ETA
            WORK( J ) = WORK( J ) + ETA
   50    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 60 J = 1, II
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
   60    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         TAU2 = WORK( N )*DELTA( N )
         TEMP = Z( N ) / TAU2
         PHI = Z( N )*TEMP
         DPHI = TEMP*TEMP
         ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $          + ABS( TAU2 )*( DPSI+DPHI )
*
         W = RHOINV + PHI + PSI
*
*        Main loop to update the values of the array   DELTA
*
         ITER = NITER + 1
*
         DO 90 NITER = ITER, MAXIT
*
*           Test for convergence
*
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
               GO TO 240
            END IF
*
*           Calculate the new step
*
            DTNSQ1 = WORK( N-1 )*DELTA( N-1 )
            DTNSQ = WORK( N )*DELTA( N )
            C = W - DTNSQ1*DPSI - DTNSQ*DPHI
            A = ( DTNSQ+DTNSQ1 )*W - DTNSQ1*DTNSQ*( DPSI+DPHI )
            B = DTNSQ1*DTNSQ*W
            IF( A.GE.ZERO ) THEN
               ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            IF( W*ETA.GT.ZERO )
     $         ETA = -W / ( DPSI+DPHI )
            TEMP = ETA - DTNSQ
            IF( TEMP.LE.ZERO )
     $         ETA = ETA / TWO
*
            ETA = ETA / ( SIGMA+SQRT( ETA+SIGMA*SIGMA ) )
            TAU = TAU + ETA
            SIGMA = SIGMA + ETA
*
            DO 70 J = 1, N
               DELTA( J ) = DELTA( J ) - ETA
               WORK( J ) = WORK( J ) + ETA
   70       CONTINUE
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 80 J = 1, II
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
   80       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            TAU2 = WORK( N )*DELTA( N )
            TEMP = Z( N ) / TAU2
            PHI = Z( N )*TEMP
            DPHI = TEMP*TEMP
            ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV
*    $             + ABS( TAU2 )*( DPSI+DPHI )
*
            W = RHOINV + PHI + PSI
   90    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
         GO TO 240
*
*        End for the case I = N
*
      ELSE
*
*        The case for I < N
*
         NITER = 1
         IP1 = I + 1
*
*        Calculate initial guess
*
         DELSQ = ( D( IP1 )-D( I ) )*( D( IP1 )+D( I ) )
         DELSQ2 = DELSQ / TWO
         SQ2=SQRT( ( D( I )*D( I )+D( IP1 )*D( IP1 ) ) / TWO )
         TEMP = DELSQ2 / ( D( I )+SQ2 )
         DO 100 J = 1, N
            WORK( J ) = D( J ) + D( I ) + TEMP
            DELTA( J ) = ( D( J )-D( I ) ) - TEMP
  100    CONTINUE
*
         PSI = ZERO
         DO 110 J = 1, I - 1
            PSI = PSI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  110    CONTINUE
*
         PHI = ZERO
         DO 120 J = N, I + 2, -1
            PHI = PHI + Z( J )*Z( J ) / ( WORK( J )*DELTA( J ) )
  120    CONTINUE
         C = RHOINV + PSI + PHI
         W = C + Z( I )*Z( I ) / ( WORK( I )*DELTA( I ) ) +
     $       Z( IP1 )*Z( IP1 ) / ( WORK( IP1 )*DELTA( IP1 ) )
*
         GEOMAVG = .FALSE.
         IF( W.GT.ZERO ) THEN
*
*           d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2
*
*           We choose d(i) as origin.
*
            ORGATI = .TRUE.
            II = I
            SGLB = ZERO
            SGUB = DELSQ2  / ( D( I )+SQ2 )
            A = C*DELSQ + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
            B = Z( I )*Z( I )*DELSQ
            IF( A.GT.ZERO ) THEN
               TAU2 = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            ELSE
               TAU2 = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            END IF
*
*           TAU2 now is an estimation of SIGMA^2 - D( I )^2. The
*           following, however, is the corresponding estimation of
*           SIGMA - D( I ).
*
            TAU = TAU2 / ( D( I )+SQRT( D( I )*D( I )+TAU2 ) )
            TEMP = SQRT(EPS)
            IF( (D(I).LE.TEMP*D(IP1)).AND.(ABS(Z(I)).LE.TEMP)
     $                               .AND.(D(I).GT.ZERO) ) THEN
               TAU = MIN( TEN*D(I), SGUB )
               GEOMAVG = .TRUE.
            END IF
         ELSE
*
*           (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2
*
*           We choose d(i+1) as origin.
*
            ORGATI = .FALSE.
            II = IP1
            SGLB = -DELSQ2  / ( D( II )+SQ2 )
            SGUB = ZERO
            A = C*DELSQ - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
            B = Z( IP1 )*Z( IP1 )*DELSQ
            IF( A.LT.ZERO ) THEN
               TAU2 = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
            ELSE
               TAU2 = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
            END IF
*
*           TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The
*           following, however, is the corresponding estimation of
*           SIGMA - D( IP1 ).
*
            TAU = TAU2 / ( D( IP1 )+SQRT( ABS( D( IP1 )*D( IP1 )+
     $            TAU2 ) ) )
         END IF
*
         SIGMA = D( II ) + TAU
         DO 130 J = 1, N
            WORK( J ) = D( J ) + D( II ) + TAU
            DELTA( J ) = ( D( J )-D( II ) ) - TAU
  130    CONTINUE
         IIM1 = II - 1
         IIP1 = II + 1
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 150 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  150    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 160 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  160    CONTINUE
*
         W = RHOINV + PHI + PSI
*
*        W is the value of the secular function with
*        its ii-th element removed.
*
         SWTCH3 = .FALSE.
         IF( ORGATI ) THEN
            IF( W.LT.ZERO )
     $         SWTCH3 = .TRUE.
         ELSE
            IF( W.GT.ZERO )
     $         SWTCH3 = .TRUE.
         END IF
         IF( II.EQ.1 .OR. II.EQ.N )
     $      SWTCH3 = .FALSE.
*
         TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = W + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $          + THREE*ABS( TEMP )
*    $          + ABS( TAU2 )*DW
*
*        Test for convergence
*
         IF( ABS( W ).LE.EPS*ERRETM ) THEN
            GO TO 240
         END IF
*
         IF( W.LE.ZERO ) THEN
            SGLB = MAX( SGLB, TAU )
         ELSE
            SGUB = MIN( SGUB, TAU )
         END IF
*
*        Calculate the new step
*
         NITER = NITER + 1
         IF( .NOT.SWTCH3 ) THEN
            DTIPSQ = WORK( IP1 )*DELTA( IP1 )
            DTISQ = WORK( I )*DELTA( I )
            IF( ORGATI ) THEN
               C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
            ELSE
               C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
            END IF
            A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
            B = DTIPSQ*DTISQ*W
            IF( C.EQ.ZERO ) THEN
               IF( A.EQ.ZERO ) THEN
                  IF( ORGATI ) THEN
                     A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*( DPSI+DPHI )
                  ELSE
                     A = Z( IP1 )*Z( IP1 ) + DTISQ*DTISQ*( DPSI+DPHI )
                  END IF
               END IF
               ETA = B / A
            ELSE IF( A.LE.ZERO ) THEN
               ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
            ELSE
               ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
            END IF
         ELSE
*
*           Interpolation using THREE most relevant poles
*
            DTIIM = WORK( IIM1 )*DELTA( IIM1 )
            DTIIP = WORK( IIP1 )*DELTA( IIP1 )
            TEMP = RHOINV + PSI + PHI
            IF( ORGATI ) THEN
               TEMP1 = Z( IIM1 ) / DTIIM
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIP*( DPSI+DPHI ) ) -
     $             ( D( IIM1 )-D( IIP1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
               IF( DPSI.LT.TEMP1 ) THEN
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
               END IF
            ELSE
               TEMP1 = Z( IIP1 ) / DTIIP
               TEMP1 = TEMP1*TEMP1
               C = ( TEMP - DTIIM*( DPSI+DPHI ) ) -
     $             ( D( IIP1 )-D( IIM1 ) )*( D( IIM1 )+D( IIP1 ) )*TEMP1
               IF( DPHI.LT.TEMP1 ) THEN
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
               ELSE
                  ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
               END IF
               ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
            END IF
            ZZ( 2 ) = Z( II )*Z( II )
            DD( 1 ) = DTIIM
            DD( 2 ) = DELTA( II )*WORK( II )
            DD( 3 ) = DTIIP
            CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
*
            IF( INFO.NE.0 ) THEN
*
*              If INFO is not 0, i.e., DLAED6 failed, switch back
*              to 2 pole interpolation.
*
               SWTCH3 = .FALSE.
               INFO = 0
               DTIPSQ = WORK( IP1 )*DELTA( IP1 )
               DTISQ = WORK( I )*DELTA( I )
               IF( ORGATI ) THEN
                  C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
               ELSE
                  C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
               END IF
               A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
               B = DTIPSQ*DTISQ*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     IF( ORGATI ) THEN
                        A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*( DPSI+DPHI )
                     ELSE
                        A = Z( IP1 )*Z( IP1 ) + DTISQ*DTISQ*( DPSI+DPHI)
                     END IF
                  END IF
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            END IF
         END IF
*
*        Note, eta should be positive if w is negative, and
*        eta should be negative otherwise. However,
*        if for some reason caused by roundoff, eta*w > 0,
*        we simply use one Newton step instead. This way
*        will guarantee eta*w < 0.
*
         IF( W*ETA.GE.ZERO )
     $      ETA = -W / DW
*
         ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
         TEMP = TAU + ETA
         IF( TEMP.GT.SGUB .OR. TEMP.LT.SGLB ) THEN
            IF( W.LT.ZERO ) THEN
               ETA = ( SGUB-TAU ) / TWO
            ELSE
               ETA = ( SGLB-TAU ) / TWO
            END IF
            IF( GEOMAVG ) THEN
               IF( W .LT. ZERO ) THEN
                  IF( TAU .GT. ZERO ) THEN
                     ETA = SQRT(SGUB*TAU)-TAU
                  END IF
               ELSE
                  IF( SGLB .GT. ZERO ) THEN
                     ETA = SQRT(SGLB*TAU)-TAU
                  END IF
               END IF
            END IF
         END IF
*
         PREW = W
*
         TAU = TAU + ETA
         SIGMA = SIGMA + ETA
*
         DO 170 J = 1, N
            WORK( J ) = WORK( J ) + ETA
            DELTA( J ) = DELTA( J ) - ETA
  170    CONTINUE
*
*        Evaluate PSI and the derivative DPSI
*
         DPSI = ZERO
         PSI = ZERO
         ERRETM = ZERO
         DO 180 J = 1, IIM1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PSI = PSI + Z( J )*TEMP
            DPSI = DPSI + TEMP*TEMP
            ERRETM = ERRETM + PSI
  180    CONTINUE
         ERRETM = ABS( ERRETM )
*
*        Evaluate PHI and the derivative DPHI
*
         DPHI = ZERO
         PHI = ZERO
         DO 190 J = N, IIP1, -1
            TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
            PHI = PHI + Z( J )*TEMP
            DPHI = DPHI + TEMP*TEMP
            ERRETM = ERRETM + PHI
  190    CONTINUE
*
         TAU2 = WORK( II )*DELTA( II )
         TEMP = Z( II ) / TAU2
         DW = DPSI + DPHI + TEMP*TEMP
         TEMP = Z( II )*TEMP
         W = RHOINV + PHI + PSI + TEMP
         ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $          + THREE*ABS( TEMP )
*    $          + ABS( TAU2 )*DW
*
         SWTCH = .FALSE.
         IF( ORGATI ) THEN
            IF( -W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         ELSE
            IF( W.GT.ABS( PREW ) / TEN )
     $         SWTCH = .TRUE.
         END IF
*
*        Main loop to update the values of the array   DELTA and WORK
*
         ITER = NITER + 1
*
         DO 230 NITER = ITER, MAXIT
*
*           Test for convergence
*
            IF( ABS( W ).LE.EPS*ERRETM ) THEN
*     $          .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN
               GO TO 240
            END IF
*
            IF( W.LE.ZERO ) THEN
               SGLB = MAX( SGLB, TAU )
            ELSE
               SGUB = MIN( SGUB, TAU )
            END IF
*
*           Calculate the new step
*
            IF( .NOT.SWTCH3 ) THEN
               DTIPSQ = WORK( IP1 )*DELTA( IP1 )
               DTISQ = WORK( I )*DELTA( I )
               IF( .NOT.SWTCH ) THEN
                  IF( ORGATI ) THEN
                     C = W - DTIPSQ*DW + DELSQ*( Z( I ) / DTISQ )**2
                  ELSE
                     C = W - DTISQ*DW - DELSQ*( Z( IP1 ) / DTIPSQ )**2
                  END IF
               ELSE
                  TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
                  IF( ORGATI ) THEN
                     DPSI = DPSI + TEMP*TEMP
                  ELSE
                     DPHI = DPHI + TEMP*TEMP
                  END IF
                  C = W - DTISQ*DPSI - DTIPSQ*DPHI
               END IF
               A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
               B = DTIPSQ*DTISQ*W
               IF( C.EQ.ZERO ) THEN
                  IF( A.EQ.ZERO ) THEN
                     IF( .NOT.SWTCH ) THEN
                        IF( ORGATI ) THEN
                           A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*
     $                         ( DPSI+DPHI )
                        ELSE
                           A = Z( IP1 )*Z( IP1 ) +
     $                         DTISQ*DTISQ*( DPSI+DPHI )
                        END IF
                     ELSE
                        A = DTISQ*DTISQ*DPSI + DTIPSQ*DTIPSQ*DPHI
                     END IF
                  END IF
                  ETA = B / A
               ELSE IF( A.LE.ZERO ) THEN
                  ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
               ELSE
                  ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
               END IF
            ELSE
*
*              Interpolation using THREE most relevant poles
*
               DTIIM = WORK( IIM1 )*DELTA( IIM1 )
               DTIIP = WORK( IIP1 )*DELTA( IIP1 )
               TEMP = RHOINV + PSI + PHI
               IF( SWTCH ) THEN
                  C = TEMP - DTIIM*DPSI - DTIIP*DPHI
                  ZZ( 1 ) = DTIIM*DTIIM*DPSI
                  ZZ( 3 ) = DTIIP*DTIIP*DPHI
               ELSE
                  IF( ORGATI ) THEN
                     TEMP1 = Z( IIM1 ) / DTIIM
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIM1 )-D( IIP1 ) )*
     $                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIP*( DPSI+DPHI ) - TEMP2
                     ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
                     IF( DPSI.LT.TEMP1 ) THEN
                        ZZ( 3 ) = DTIIP*DTIIP*DPHI
                     ELSE
                        ZZ( 3 ) = DTIIP*DTIIP*( ( DPSI-TEMP1 )+DPHI )
                     END IF
                  ELSE
                     TEMP1 = Z( IIP1 ) / DTIIP
                     TEMP1 = TEMP1*TEMP1
                     TEMP2 = ( D( IIP1 )-D( IIM1 ) )*
     $                       ( D( IIM1 )+D( IIP1 ) )*TEMP1
                     C = TEMP - DTIIM*( DPSI+DPHI ) - TEMP2
                     IF( DPHI.LT.TEMP1 ) THEN
                        ZZ( 1 ) = DTIIM*DTIIM*DPSI
                     ELSE
                        ZZ( 1 ) = DTIIM*DTIIM*( DPSI+( DPHI-TEMP1 ) )
                     END IF
                     ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
                  END IF
               END IF
               DD( 1 ) = DTIIM
               DD( 2 ) = DELTA( II )*WORK( II )
               DD( 3 ) = DTIIP
               CALL DLAED6( NITER, ORGATI, C, DD, ZZ, W, ETA, INFO )
*
               IF( INFO.NE.0 ) THEN
*
*                 If INFO is not 0, i.e., DLAED6 failed, switch
*                 back to two pole interpolation
*
                  SWTCH3 = .FALSE.
                  INFO = 0
                  DTIPSQ = WORK( IP1 )*DELTA( IP1 )
                  DTISQ = WORK( I )*DELTA( I )
                  IF( .NOT.SWTCH ) THEN
                     IF( ORGATI ) THEN
                        C = W - DTIPSQ*DW + DELSQ*( Z( I )/DTISQ )**2
                     ELSE
                        C = W - DTISQ*DW - DELSQ*( Z( IP1 )/DTIPSQ )**2
                     END IF
                  ELSE
                     TEMP = Z( II ) / ( WORK( II )*DELTA( II ) )
                     IF( ORGATI ) THEN
                        DPSI = DPSI + TEMP*TEMP
                     ELSE
                        DPHI = DPHI + TEMP*TEMP
                     END IF
                     C = W - DTISQ*DPSI - DTIPSQ*DPHI
                  END IF
                  A = ( DTIPSQ+DTISQ )*W - DTIPSQ*DTISQ*DW
                  B = DTIPSQ*DTISQ*W
                  IF( C.EQ.ZERO ) THEN
                     IF( A.EQ.ZERO ) THEN
                        IF( .NOT.SWTCH ) THEN
                           IF( ORGATI ) THEN
                              A = Z( I )*Z( I ) + DTIPSQ*DTIPSQ*
     $                            ( DPSI+DPHI )
                           ELSE
                              A = Z( IP1 )*Z( IP1 ) +
     $                            DTISQ*DTISQ*( DPSI+DPHI )
                           END IF
                        ELSE
                           A = DTISQ*DTISQ*DPSI + DTIPSQ*DTIPSQ*DPHI
                        END IF
                     END IF
                     ETA = B / A
                  ELSE IF( A.LE.ZERO ) THEN
                     ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
                  ELSE
                     ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
                  END IF
               END IF
            END IF
*
*           Note, eta should be positive if w is negative, and
*           eta should be negative otherwise. However,
*           if for some reason caused by roundoff, eta*w > 0,
*           we simply use one Newton step instead. This way
*           will guarantee eta*w < 0.
*
            IF( W*ETA.GE.ZERO )
     $         ETA = -W / DW
*
            ETA = ETA / ( SIGMA+SQRT( SIGMA*SIGMA+ETA ) )
            TEMP=TAU+ETA
            IF( TEMP.GT.SGUB .OR. TEMP.LT.SGLB ) THEN
               IF( W.LT.ZERO ) THEN
                  ETA = ( SGUB-TAU ) / TWO
               ELSE
                  ETA = ( SGLB-TAU ) / TWO
               END IF
               IF( GEOMAVG ) THEN
                  IF( W .LT. ZERO ) THEN
                     IF( TAU .GT. ZERO ) THEN
                        ETA = SQRT(SGUB*TAU)-TAU
                     END IF
                  ELSE
                     IF( SGLB .GT. ZERO ) THEN
                        ETA = SQRT(SGLB*TAU)-TAU
                     END IF
                  END IF
               END IF
            END IF
*
            PREW = W
*
            TAU = TAU + ETA
            SIGMA = SIGMA + ETA
*
            DO 200 J = 1, N
               WORK( J ) = WORK( J ) + ETA
               DELTA( J ) = DELTA( J ) - ETA
  200       CONTINUE
*
*           Evaluate PSI and the derivative DPSI
*
            DPSI = ZERO
            PSI = ZERO
            ERRETM = ZERO
            DO 210 J = 1, IIM1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PSI = PSI + Z( J )*TEMP
               DPSI = DPSI + TEMP*TEMP
               ERRETM = ERRETM + PSI
  210       CONTINUE
            ERRETM = ABS( ERRETM )
*
*           Evaluate PHI and the derivative DPHI
*
            DPHI = ZERO
            PHI = ZERO
            DO 220 J = N, IIP1, -1
               TEMP = Z( J ) / ( WORK( J )*DELTA( J ) )
               PHI = PHI + Z( J )*TEMP
               DPHI = DPHI + TEMP*TEMP
               ERRETM = ERRETM + PHI
  220       CONTINUE
*
            TAU2 = WORK( II )*DELTA( II )
            TEMP = Z( II ) / TAU2
            DW = DPSI + DPHI + TEMP*TEMP
            TEMP = Z( II )*TEMP
            W = RHOINV + PHI + PSI + TEMP
            ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV
     $             + THREE*ABS( TEMP )
*    $             + ABS( TAU2 )*DW
*
            IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
     $         SWTCH = .NOT.SWTCH
*
  230    CONTINUE
*
*        Return with INFO = 1, NITER = MAXIT and not converged
*
         INFO = 1
*
      END IF
*
  240 CONTINUE
      RETURN
*
*     End of DLASD4
*
      END

@andreasnoack
Copy link
Member

Your version from 3.4.0 is identical to the version in 3.4.2 (the latest and the one in Ubuntu 13.04) except for MAXIT. However, the version of dlasd4.f in 3.4.1 (which is the version in Ubuntu 12.10) is significantly different from the two others. The versions in 3.4.0 and 3.4.2 give the wrong answer when linked dynamically but not statically. The version in 3.4.1 is correct when it returns info=0 but for the same input it sometimes return info=+-BIGNUM.

@alanedelman
Copy link
Contributor Author

What do you make of all this?

@xianyi
Copy link

xianyi commented Feb 19, 2013

Hi @andreasnoackjensen ,

Do you mean you can get the correct result with the static library?

Xianyi

@andreasnoack
Copy link
Member

Hi @xianyi

Yes exactly. I have updated the gist with an example where I link statically and dynamically to a fresh build of OpenBLAS-develop.

@ViralBShah
Copy link
Member

This is rather bizarre!

@andreasnoack
Copy link
Member

I have tried the code again on Ubuntu. Last time was on Mac. On Ubuntu I can also get the wrong result with static linking. It is just kind of random and can be triggered by different things. In particular I can change the result by commenting out the write statements as shown in the gist. Hence I guess the subroutine in LAPACK 3.4.0 and 3.4.2 has some kind of error, but not the subroutine in 3.4.1.

@ViralBShah
Copy link
Member

@alanedelman Could you point the authors to this issue page?

@andreasnoack
Copy link
Member

@alanedelman Correction. I assumed that the version you posted was from LAPACK 3.4.0 since that is what the header says. However, that is not the case. Your version is the same as dlasd4.f in LAPACK 3.4.2 except that in yours MAXIT=60 and in LAPACK 3.4.2 MAXIT=600, but I think both has a bug. The old version pre 3.4.2 might have different bug.

Update: Sorry for spamming. The old bug might be related the following which is from julia with LAPACK 3.4.1 and reference BLAS

julia> v=sort(randn(10).^2);z=randn(10);

julia> svdmax(v,z)
ERROR: LapackException(-1099511627776)
 in lasd4! at /home/andreasnoackjensen/Desktop/dlasd4.jl:31
 in svdmax at /home/andreasnoackjensen/Desktop/dlasd4.jl:37

julia> svdmax(v,z)
4.571419253335635

@andreasnoack
Copy link
Member

This is now submitted as a LAPACK bug so I think this issue can be closed.

@pao
Copy link
Member

pao commented Feb 20, 2013

We can leave it open until Julia updates to a fixed version.

@ViralBShah
Copy link
Member

I have added an upstream tag to this issue. We should leave it open until upstream fixes it, and we use it.

Could you also provide pointers to the communication with the LAPACK team for the record here?

@andreasnoack
Copy link
Member

The bug is registered here

http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=13&t=4250

@ViralBShah
Copy link
Member

@andreasnoackjensen Should we just replace the dlasd4 in 3.4.2 with the one in 3.4.1 as suggested in the upstream thread?

@ViralBShah
Copy link
Member

I think we should also find the matrices for which the svd is incorrect due to this bug and add it to our testsuite. Since we are going to release 0.2 at some point, we should certainly make sure that our svd is not broken.

I am tagging this as 0.2.

Also see discussion in OpenMathLib/OpenBLAS#225.

@andreasnoack
Copy link
Member

I am not sure about this one. While I have experienced weird errors while calling svdvals either on general matrices or bidiagonals as in #3396 I cannot produce an example that makes svdvals consistently failing. Also, maybe the changes in dlasd4 were made for a reason that we are not aware of. It would be good if we got an official answer on the bug report. Does Alan or anyone else know about when next release of LAPACK is out?

@ViralBShah
Copy link
Member

@alanedelman Can you reach out to someone in the LAPACK team about dlasd4?

@ViralBShah
Copy link
Member

This is clearly not a 0.2 issue. Updated issue to have no milestone.

@andreasnoack
Copy link
Member

There is a patch for this now. See http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=13&t=4250. The development version of LAPACK also has a fix and both solutions seem to solve the problem on my machine.

@ViralBShah
Copy link
Member

Perhaps we should apply this patch after untarring openblas.

ViralBShah added a commit that referenced this issue Aug 13, 2013
openblas no longer depends on LAPACK download, as it is included within.
@ViralBShah
Copy link
Member

@staticfloat We will need to apply this patch for your openblas 2.8 debs too.

Waiting to verify that this problem is actually fixed with this patch, before closing.

kmsquire referenced this issue Aug 13, 2013
gesdd's RWORK size was recently changed to match the netlib header.
However, the minimum size calculated results in a segfault.  Both
Octave and Numpy use a different minimum size, and testing verified
that anything smaller than this leads to a segfault.

Numpy: https://github.com/numpy/numpy/blob/master/numpy/linalg/umath_linalg.c.src#L2922
Octave: http://hg.savannah.gnu.org/hgweb/octave/file/2f1729cae08f/liboctave/numeric/CmplxSVD.cc#l184
@xianyi
Copy link

xianyi commented Aug 14, 2013

Hi @ViralBShah ,

Could you create a pull request to OpenBLAS, too?
Thank you

Xianyi

@ViralBShah
Copy link
Member

Will do.

@Keno
Copy link
Member

Keno commented Aug 19, 2013

Can this be closed now that this is patched?

@vtjnash
Copy link
Member

vtjnash commented Aug 21, 2013

@ViralBShah bump. I'm moving this to 0.3, since the remaining issue (having you make a pull request to OpenBLAS), doesn't seem to be necessary for 0.2 release

xianyi added a commit to OpenMathLib/OpenBLAS that referenced this issue Aug 21, 2013
@staticfloat
Copy link
Member

I've gone ahead and patched the openblas packages on my PPA with this, and
everything seems to be working.

On Wed, Aug 21, 2013 at 12:06 AM, Jameson Nash notifications@git.luolix.topwrote:

@ViralBShah https://github.com/ViralBShah bump. I'm moving this to 0.3,
since the remaining issue (having you make a pull request to OpenBLAS),
doesn't seem to be necessary for 0.2 release


Reply to this email directly or view it on GitHubhttps://github.com//issues/2340#issuecomment-22994272
.

@vtjnash vtjnash closed this as completed Aug 23, 2013
@ViralBShah
Copy link
Member

Openblas develop branch includes this patch now.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Indicates an unexpected problem or unintended behavior upstream The issue is with an upstream dependency, e.g. LLVM
Projects
None yet
Development

No branches or pull requests

8 participants