Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add getindex method to LU{Tridiagonal} for extracting factors (and full) #12137

Merged
merged 1 commit into from
Jul 14, 2015
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 65 additions & 11 deletions base/linalg/lu.jl
Original file line number Diff line number Diff line change
Expand Up @@ -113,23 +113,18 @@ function ipiv2perm{T}(v::AbstractVector{T}, maxi::Integer)
return p
end

function getindex{T,S<:StridedMatrix}(A::LU{T,S}, d::Symbol)
m, n = size(A)
function getindex{T,S<:StridedMatrix}(F::LU{T,S}, d::Symbol)
m, n = size(F)
if d == :L
L = tril!(A.factors[1:m, 1:min(m,n)])
L = tril!(F.factors[1:m, 1:min(m,n)])
for i = 1:min(m,n); L[i,i] = one(T); end
return L
elseif d == :U
return triu!(A.factors[1:min(m,n), 1:n])
return triu!(F.factors[1:min(m,n), 1:n])
elseif d == :p
return ipiv2perm(A.ipiv, m)
return ipiv2perm(F.ipiv, m)
elseif d == :P
p = A[:p]
P = zeros(T, m, m)
for i in 1:m
P[i,p[i]] = one(T)
end
return P
return eye(T, m)[:,invperm(F[:p])]
else
throw(KeyError(d))
end
Expand Down Expand Up @@ -263,6 +258,65 @@ end

factorize(A::Tridiagonal) = lufact(A)

function getindex{T}(F::Base.LinAlg.LU{T,Tridiagonal{T}}, d::Symbol)
m, n = size(F)
if d == :L
L = full(Bidiagonal(ones(T, n), F.factors.dl, false))
for i = 2:n
tmp = L[F.ipiv[i], 1:i - 1]
L[F.ipiv[i], 1:i - 1] = L[i, 1:i - 1]
L[i, 1:i - 1] = tmp
end
return L
elseif d == :U
U = full(Bidiagonal(F.factors.d, F.factors.du, true))
for i = 1:n - 2
U[i,i + 2] = F.factors.du2[i]
end
return U
elseif d == :p
return ipiv2perm(F.ipiv, m)
elseif d == :P
return eye(T, m)[:,invperm(F[:p])]
end
throw(KeyError(d))
end

function full{T}(F::Base.LinAlg.LU{T,Tridiagonal{T}})
n = size(F, 1)

dl = copy(F.factors.dl)
d = copy(F.factors.d)
du = copy(F.factors.du)
du2 = copy(F.factors.du2)

for i = n - 1:-1:1
li = dl[i]
dl[i] = li*d[i]
d[i + 1] += li*du[i]
if i < n - 1
du[i + 1] += li*du2[i]
end

if F.ipiv[i] != i
tmp = dl[i]
dl[i] = d[i]
d[i] = tmp

tmp = d[i + 1]
d[i + 1] = du[i]
du[i] = tmp

if i < n - 1
tmp = du[i + 1]
du[i + 1] = du2[i]
du2[i] = tmp
end
end
end
return Tridiagonal(dl, d, du)
end

# See dgtts2.f
function A_ldiv_B!{T}(A::LU{T,Tridiagonal{T}}, B::AbstractVecOrMat)
n = size(A,1)
Expand Down
6 changes: 5 additions & 1 deletion test/linalg/lu.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

debug = false

using Base.Test

n = 10

# Split n into 2 parts for tests needing two matrices
Expand Down Expand Up @@ -57,6 +59,9 @@ debug && println("(Automatic) Square LU decomposition")
debug && println("Tridiagonal LU")
κd = cond(full(d),1)
lud = lufact(d)
@test_approx_eq lud[:L]*lud[:U] lud[:P]*full(d)
@test_approx_eq lud[:L]*lud[:U] full(d)[lud[:p],:]
@test_approx_eq full(lud) d
@test norm(d*(lud\b) - b, 1) < ε*κd*n*2 # Two because the right hand side has two columns
if eltya <: Real
@test norm((lud.'\b) - full(d.')\b, 1) < ε*κd*n*2 # Two because the right hand side has two columns
Expand Down Expand Up @@ -112,6 +117,5 @@ for elty in (Float32, Float64, Complex64, Complex128)
# @test norm(F[:vectors]*Diagonal(F[:values])/F[:vectors] - A) > 0.01
end


@test @inferred(logdet(Complex64[1.0f0 0.5f0; 0.5f0 -1.0f0])) === 0.22314355f0 + 3.1415927f0im
@test_throws DomainError logdet([1 1; 1 -1])