Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Changed issym to issymmetric. #15192

Merged
merged 1 commit into from
Feb 28, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -126,6 +126,8 @@ Deprecated or removed

* Deprecate `chol(A,Val{:U/:L})` in favor of `chol(A)` ([#13680]).

* `issym` is deprecated in favor of `issymmetric` to match similar functions (`ishermitian`, ...) ([#15192])

Julia v0.4.0 Release Notes
==========================

Expand Down
3 changes: 3 additions & 0 deletions base/deprecated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -990,3 +990,6 @@ end
export call

@deprecate_binding LambdaStaticData LambdaInfo

# Changed issym to issymmetric. #15192
@deprecate issym issymmetric
6 changes: 3 additions & 3 deletions base/docs/helpdb/Base.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6698,11 +6698,11 @@ The arguments to a function or constructor are outside the valid domain.
DomainError

"""
issym(A) -> Bool
issymmetric(A) -> Bool

Test whether a matrix is symmetric.
"""
issym
issymmetric

"""
acosh(x)
Expand Down Expand Up @@ -8427,7 +8427,7 @@ rand!

Compute the Bunch-Kaufman [^Bunch1977] factorization of a real symmetric or complex Hermitian
matrix `A` and return a `BunchKaufman` object. The following functions are available for
`BunchKaufman` objects: `size`, `\\`, `inv`, `issym`, `ishermitian`.
`BunchKaufman` objects: `size`, `\\`, `inv`, `issymmetric`, `ishermitian`.

[^Bunch1977]: J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation 31:137 (1977), 163-179. [url](http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0).

Expand Down
2 changes: 1 addition & 1 deletion base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -664,7 +664,7 @@ export
ishermitian,
isposdef!,
isposdef,
issym,
issymmetric,
istril,
istriu,
kron,
Expand Down
2 changes: 1 addition & 1 deletion base/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ export
ishermitian,
isposdef,
isposdef!,
issym,
issymmetric,
istril,
istriu,
kron,
Expand Down
4 changes: 2 additions & 2 deletions base/linalg/arnoldi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -154,7 +154,7 @@ function _eigs(A, B;
T = eltype(A)
iscmplx = T <: Complex
isgeneral = B !== I
sym = issym(A) && !iscmplx
sym = issymmetric(A) && !iscmplx
nevmax=sym ? n-1 : n-2
if nevmax <= 0
throw(ArgumentError("Input matrix A is too small. Use eigfact instead."))
Expand Down Expand Up @@ -297,7 +297,7 @@ end
## v = [ left_singular_vector; right_singular_vector ]
*{T,S}(s::SVDOperator{T,S}, v::Vector{T}) = [s.X * v[s.m+1:end]; s.X' * v[1:s.m]]
size(s::SVDOperator) = s.m + s.n, s.m + s.n
issym(s::SVDOperator) = true
issymmetric(s::SVDOperator) = true

svds{T<:BlasFloat}(A::AbstractMatrix{T}; kwargs...) = _svds(A; kwargs...)
svds(A::AbstractMatrix{BigFloat}; kwargs...) = throw(MethodError(svds, Any[A, kwargs...]))
Expand Down
4 changes: 2 additions & 2 deletions base/linalg/bitarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -134,8 +134,8 @@ end

## Structure query functions

issym(A::BitMatrix) = size(A, 1)==size(A, 2) && countnz(A - A.')==0
ishermitian(A::BitMatrix) = issym(A)
issymmetric(A::BitMatrix) = size(A, 1)==size(A, 2) && countnz(A - A.')==0
ishermitian(A::BitMatrix) = issymmetric(A)

function nonzero_chunks(chunks::Vector{UInt64}, pos0::Int, pos1::Int)
k0, l0 = Base.get_chunks_id(pos0)
Expand Down
20 changes: 10 additions & 10 deletions base/linalg/bunchkaufman.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,30 +14,30 @@ immutable BunchKaufman{T,S<:AbstractMatrix} <: Factorization{T}
end
BunchKaufman{T}(LD::AbstractMatrix{T}, ipiv::Vector{BlasInt}, uplo::Char, symmetric::Bool, rook::Bool) = BunchKaufman{T,typeof(LD)}(LD, ipiv, uplo, symmetric, rook)

function bkfact!{T<:BlasReal}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issym(A), rook::Bool=false)
function bkfact!{T<:BlasReal}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false)
if !symmetric
throw(ArgumentError("Bunch-Kaufman decomposition is only valid for symmetric matrices"))
end
LD, ipiv = rook ? LAPACK.sytrf_rook!(char_uplo(uplo) , A) : LAPACK.sytrf!(char_uplo(uplo) , A)
BunchKaufman(LD, ipiv, char_uplo(uplo), symmetric, rook)
end
function bkfact!{T<:BlasComplex}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issym(A), rook::Bool=false)
function bkfact!{T<:BlasComplex}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false)
if rook
LD, ipiv = (symmetric ? LAPACK.sytrf_rook! : LAPACK.hetrf_rook!)(char_uplo(uplo) , A)
else
LD, ipiv = (symmetric ? LAPACK.sytrf! : LAPACK.hetrf!)(char_uplo(uplo) , A)
end
BunchKaufman(LD, ipiv, char_uplo(uplo), symmetric, rook)
end
bkfact{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issym(A), rook::Bool=false) = bkfact!(copy(A), uplo, symmetric, rook)
bkfact{T}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issym(A), rook::Bool=false) = bkfact!(convert(Matrix{promote_type(Float32,typeof(sqrt(one(T))))},A),uplo,symmetric,rook)
bkfact{T<:BlasFloat}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) = bkfact!(copy(A), uplo, symmetric, rook)
bkfact{T}(A::StridedMatrix{T}, uplo::Symbol=:U, symmetric::Bool=issymmetric(A), rook::Bool=false) = bkfact!(convert(Matrix{promote_type(Float32,typeof(sqrt(one(T))))},A),uplo,symmetric,rook)

convert{T}(::Type{BunchKaufman{T}},B::BunchKaufman) = BunchKaufman(convert(Matrix{T},B.LD),B.ipiv,B.uplo,B.symmetric,B.rook)
convert{T}(::Type{Factorization{T}}, B::BunchKaufman) = convert(BunchKaufman{T}, B)

size(B::BunchKaufman) = size(B.LD)
size(B::BunchKaufman,d::Integer) = size(B.LD,d)
issym(B::BunchKaufman) = B.symmetric
issymmetric(B::BunchKaufman) = B.symmetric
ishermitian(B::BunchKaufman) = !B.symmetric

function inv{T<:BlasReal}(B::BunchKaufman{T})
Expand All @@ -49,7 +49,7 @@ function inv{T<:BlasReal}(B::BunchKaufman{T})
end

function inv{T<:BlasComplex}(B::BunchKaufman{T})
if issym(B)
if issymmetric(B)
if B.rook
copytri!(LAPACK.sytri_rook!(B.uplo, copy(B.LD), B.ipiv), B.uplo)
else
Expand All @@ -73,9 +73,9 @@ function A_ldiv_B!{T<:BlasReal}(B::BunchKaufman{T}, R::StridedVecOrMat{T})
end
function A_ldiv_B!{T<:BlasComplex}(B::BunchKaufman{T}, R::StridedVecOrMat{T})
if B.rook
(issym(B) ? LAPACK.sytrs_rook! : LAPACK.hetrs_rook!)(B.uplo, B.LD, B.ipiv, R)
(issymmetric(B) ? LAPACK.sytrs_rook! : LAPACK.hetrs_rook!)(B.uplo, B.LD, B.ipiv, R)
else
(issym(B) ? LAPACK.sytrs! : LAPACK.hetrs!)(B.uplo, B.LD, B.ipiv, R)
(issymmetric(B) ? LAPACK.sytrs! : LAPACK.hetrs!)(B.uplo, B.LD, B.ipiv, R)
end
end

Expand All @@ -94,9 +94,9 @@ function det(F::BunchKaufman)
else
# 2x2 pivot case. Make sure not to square before the subtraction by scaling with the off-diagonal element. This is safe because the off diagonal is always large for 2x2 pivots.
if F.uplo == 'U'
d *= M[i, i + 1]*(M[i,i]/M[i, i + 1]*M[i + 1, i + 1] - (issym(F) ? M[i, i + 1] : conj(M[i, i + 1])))
d *= M[i, i + 1]*(M[i,i]/M[i, i + 1]*M[i + 1, i + 1] - (issymmetric(F) ? M[i, i + 1] : conj(M[i, i + 1])))
else
d *= M[i + 1,i]*(M[i, i]/M[i + 1, i]*M[i + 1, i + 1] - (issym(F) ? M[i + 1, i] : conj(M[i + 1, i])))
d *= M[i + 1,i]*(M[i, i]/M[i + 1, i]*M[i + 1, i + 1] - (issymmetric(F) ? M[i + 1, i] : conj(M[i + 1, i])))
end
i += 2
end
Expand Down
2 changes: 1 addition & 1 deletion base/linalg/dense.jl
Original file line number Diff line number Diff line change
Expand Up @@ -340,7 +340,7 @@ end
logm(a::Complex) = log(a)

function sqrtm{T<:Real}(A::StridedMatrix{T})
if issym(A)
if issymmetric(A)
return full(sqrtm(Symmetric(A)))
end
n = checksquare(A)
Expand Down
2 changes: 1 addition & 1 deletion base/linalg/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ parent(D::Diagonal) = D.diag

ishermitian{T<:Real}(D::Diagonal{T}) = true
ishermitian(D::Diagonal) = all(D.diag .== real(D.diag))
issym(D::Diagonal) = true
issymmetric(D::Diagonal) = true
isposdef(D::Diagonal) = all(D.diag .> 0)

factorize(D::Diagonal) = D
Expand Down
8 changes: 4 additions & 4 deletions base/linalg/eigen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ isposdef(A::Union{Eigen,GeneralizedEigen}) = isreal(A.values) && all(A.values .>
function eigfact!{T<:BlasReal}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
n = size(A, 2)
n==0 && return Eigen(zeros(T, 0), zeros(T, 0, 0))
issym(A) && return eigfact!(Symmetric(A))
issymmetric(A) && return eigfact!(Symmetric(A))
A, WR, WI, VL, VR, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'V', 'N', A)
all(WI .== 0.) && return Eigen(WR, VR)
evec = zeros(Complex{T}, n, n)
Expand Down Expand Up @@ -81,7 +81,7 @@ eigvals{T,V,S,U}(F::Union{Eigen{T,V,S,U}, GeneralizedEigen{T,V,S,U}}) = F[:value
Same as `eigvals`, but saves space by overwriting the input `A` (and `B`), instead of creating a copy.
"""
function eigvals!{T<:BlasReal}(A::StridedMatrix{T}; permute::Bool=true, scale::Bool=true)
issym(A) && return eigvals!(Symmetric(A))
issymmetric(A) && return eigvals!(Symmetric(A))
_, valsre, valsim, _ = LAPACK.geevx!(permute ? (scale ? 'B' : 'P') : (scale ? 'S' : 'N'), 'N', 'N', 'N', A)
return all(valsim .== 0) ? valsre : complex(valsre, valsim)
end
Expand Down Expand Up @@ -120,7 +120,7 @@ det(A::Eigen) = prod(A.values)

# Generalized eigenproblem
function eigfact!{T<:BlasReal}(A::StridedMatrix{T}, B::StridedMatrix{T})
issym(A) && isposdef(B) && return eigfact!(Symmetric(A), Symmetric(B))
issymmetric(A) && isposdef(B) && return eigfact!(Symmetric(A), Symmetric(B))
n = size(A, 1)
alphar, alphai, beta, _, vr = LAPACK.ggev!('N', 'V', A, B)
all(alphai .== 0) && return GeneralizedEigen(alphar ./ beta, vr)
Expand Down Expand Up @@ -160,7 +160,7 @@ function eig(A::Number, B::Number)
end

function eigvals!{T<:BlasReal}(A::StridedMatrix{T}, B::StridedMatrix{T})
issym(A) && isposdef(B) && return eigvals!(Symmetric(A), Symmetric(B))
issymmetric(A) && isposdef(B) && return eigvals!(Symmetric(A), Symmetric(B))
alphar, alphai, beta, vl, vr = LAPACK.ggev!('N', 'N', A, B)
return (all(alphai .== 0) ? alphar : complex(alphar, alphai))./beta
end
Expand Down
4 changes: 2 additions & 2 deletions base/linalg/generic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -382,7 +382,7 @@ condskeel{T<:Integer}(A::AbstractMatrix{T}, p::Real=Inf) = norm(abs(inv(float(A)
condskeel(A::AbstractMatrix, x::AbstractVector, p::Real=Inf) = norm(abs(inv(A))*abs(A)*abs(x), p)
condskeel{T<:Integer}(A::AbstractMatrix{T}, x::AbstractVector, p::Real=Inf) = norm(abs(inv(float(A)))*abs(A)*abs(x), p)

function issym(A::AbstractMatrix)
function issymmetric(A::AbstractMatrix)
m, n = size(A)
if m != n
return false
Expand All @@ -395,7 +395,7 @@ function issym(A::AbstractMatrix)
return true
end

issym(x::Number) = true
issymmetric(x::Number) = true

function ishermitian(A::AbstractMatrix)
m, n = size(A)
Expand Down
10 changes: 5 additions & 5 deletions base/linalg/symmetric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,9 +59,9 @@ copy{T,S}(A::Hermitian{T,S}) = Hermitian{T,S}(copy(A.data),A.uplo)
ishermitian(A::Hermitian) = true
ishermitian{T<:Real,S}(A::Symmetric{T,S}) = true
ishermitian{T<:Complex,S}(A::Symmetric{T,S}) = all(imag(A.data) .== 0)
issym{T<:Real,S}(A::Hermitian{T,S}) = true
issym{T<:Complex,S}(A::Hermitian{T,S}) = all(imag(A.data) .== 0)
issym(A::Symmetric) = true
issymmetric{T<:Real,S}(A::Hermitian{T,S}) = true
issymmetric{T<:Complex,S}(A::Hermitian{T,S}) = all(imag(A.data) .== 0)
issymmetric(A::Symmetric) = true
transpose(A::Symmetric) = A
ctranspose{T<:Real}(A::Symmetric{T}) = A
function ctranspose(A::Symmetric)
Expand Down Expand Up @@ -138,15 +138,15 @@ A_mul_B!{T<:BlasComplex,S<:StridedMatrix}(C::StridedMatrix{T}, A::StridedMatrix{
*(A::HermOrSym, B::HermOrSym) = full(A)*full(B)
*(A::StridedMatrix, B::HermOrSym) = A*full(B)

bkfact(A::HermOrSym) = bkfact(A.data, symbol(A.uplo), issym(A))
bkfact(A::HermOrSym) = bkfact(A.data, symbol(A.uplo), issymmetric(A))
factorize(A::HermOrSym) = bkfact(A)

# Is just RealHermSymComplexHerm, but type alias seems to be broken
det{T<:Real,S}(A::Union{Hermitian{T,S}, Symmetric{T,S}, Hermitian{Complex{T},S}}) = real(det(bkfact(A)))
det{T<:Real}(A::Symmetric{T}) = det(bkfact(A))
det(A::Symmetric) = det(bkfact(A))

\{T,S<:StridedMatrix}(A::HermOrSym{T,S}, B::StridedVecOrMat) = \(bkfact(A.data, symbol(A.uplo), issym(A)), B)
\{T,S<:StridedMatrix}(A::HermOrSym{T,S}, B::StridedVecOrMat) = \(bkfact(A.data, symbol(A.uplo), issymmetric(A)), B)

inv{T<:BlasFloat,S<:StridedMatrix}(A::Hermitian{T,S}) = Hermitian{T,S}(inv(bkfact(A.data, symbol(A.uplo))), A.uplo)
inv{T<:BlasFloat,S<:StridedMatrix}(A::Symmetric{T,S}) = Symmetric{T,S}(inv(bkfact(A.data, symbol(A.uplo), true)), A.uplo)
Expand Down
8 changes: 4 additions & 4 deletions base/sparse.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,10 @@ import Base.LinAlg: At_ldiv_B!, Ac_ldiv_B!
import Base: @get!, acos, acosd, acot, acotd, acsch, asech, asin, asind, asinh,
atan, atand, atanh, broadcast!, chol, conj!, cos, cosc, cosd, cosh, cospi, cot,
cotd, coth, countnz, csc, cscd, csch, ctranspose!, diag, diff, done, dot, eig,
exp10, exp2, eye, findn, floor, hash, indmin, inv, issym, istril, istriu, log10,
log2, lu, maxabs, minabs, next, sec, secd, sech, show, showarray, sin, sinc,
sind, sinh, sinpi, squeeze, start, sum, sumabs, sumabs2, summary, tan, tand,
tanh, trace, transpose!, tril!, triu!, trunc, vecnorm, writemime, abs, abs2,
exp10, exp2, eye, findn, floor, hash, indmin, inv, issymmetric, istril, istriu,
log10, log2, lu, maxabs, minabs, next, sec, secd, sech, show, showarray, sin,
sinc, sind, sinh, sinpi, squeeze, start, sum, sumabs, sumabs2, summary, tan,
tand, tanh, trace, transpose!, tril!, triu!, trunc, vecnorm, writemime, abs, abs2,
broadcast, ceil, complex, cond, conj, convert, copy, copy!, ctranspose, diagm,
exp, expm1, factorize, find, findmax, findmin, findnz, float, full, getindex,
hcat, hvcat, imag, indmax, ishermitian, kron, length, log, log1p, max, min,
Expand Down
6 changes: 3 additions & 3 deletions base/sparse/cholmod.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ import Base: (*), convert, copy, eltype, get, getindex, show, showarray, size,

import Base.LinAlg: (\), A_mul_Bc, A_mul_Bt, Ac_ldiv_B, Ac_mul_B, At_ldiv_B, At_mul_B,
cholfact, cholfact!, det, diag, ishermitian, isposdef,
issym, ldltfact, ldltfact!, logdet
issymmetric, ldltfact, ldltfact!, logdet

importall ..SparseArrays

Expand Down Expand Up @@ -986,7 +986,7 @@ function convert{Tv}(::Type{SparseMatrixCSC{Tv,SuiteSparse_long}}, A::Sparse{Tv}
end
function convert(::Type{Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}}, A::Sparse{Float64})
s = unsafe_load(A.p)
if !issym(A)
if !issymmetric(A)
throw(ArgumentError("matrix is not symmetric"))
end
return Symmetric(SparseMatrixCSC(s.nrow, s.ncol, increment(pointer_to_array(s.p, (s.ncol + 1,), false)), increment(pointer_to_array(s.i, (s.nzmax,), false)), copy(pointer_to_array(s.x, (s.nzmax,), false))), s.stype > 0 ? :U : :L)
Expand Down Expand Up @@ -1536,7 +1536,7 @@ function isposdef{Tv<:VTypes}(A::SparseMatrixCSC{Tv,SuiteSparse_long})
true
end

function issym(A::Sparse)
function issymmetric(A::Sparse)
s = unsafe_load(A.p)
if s.stype != 0
return isreal(A)
Expand Down
2 changes: 1 addition & 1 deletion base/sparse/sparsematrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2911,7 +2911,7 @@ function blkdiag(X::SparseMatrixCSC...)
end

## Structure query functions
issym(A::SparseMatrixCSC) = is_hermsym(A, IdFun())
issymmetric(A::SparseMatrixCSC) = is_hermsym(A, IdFun())

ishermitian(A::SparseMatrixCSC) = is_hermsym(A, ConjFun())

Expand Down
4 changes: 2 additions & 2 deletions doc/stdlib/linalg.rst
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f

.. Docstring generated from Julia source

Compute the Bunch-Kaufman [Bunch1977]_ factorization of a real symmetric or complex Hermitian matrix ``A`` and return a ``BunchKaufman`` object. The following functions are available for ``BunchKaufman`` objects: ``size``\ , ``\``\ , ``inv``\ , ``issym``\ , ``ishermitian``\ .
Compute the Bunch-Kaufman [Bunch1977]_ factorization of a real symmetric or complex Hermitian matrix ``A`` and return a ``BunchKaufman`` object. The following functions are available for ``BunchKaufman`` objects: ``size``\ , ``\``\ , ``inv``\ , ``issymmetric``\ , ``ishermitian``\ .

.. [Bunch1977] J R Bunch and L Kaufman, Some stable methods for calculating inertia and solving symmetric linear systems, Mathematics of Computation 31:137 (1977), 163-179. `url <http://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0428694-0>`_\ .

Expand Down Expand Up @@ -1093,7 +1093,7 @@ Linear algebra functions in Julia are largely implemented by calling functions f

Computes the solution ``X`` to the Sylvester equation ``AX + XB + C = 0``\ , where ``A``\ , ``B`` and ``C`` have compatible dimensions and ``A`` and ``-B`` have no eigenvalues with equal real part.

.. function:: issym(A) -> Bool
.. function:: issymmetric(A) -> Bool

.. Docstring generated from Julia source

Expand Down
2 changes: 1 addition & 1 deletion test/arrayops.jl
Original file line number Diff line number Diff line change
Expand Up @@ -964,7 +964,7 @@ end

# Handle block matrices
A = [randn(2,2) for i = 1:2, j = 1:2]
@test issym(A.'A)
@test issymmetric(A.'A)
A = [complex(randn(2,2), randn(2,2)) for i = 1:2, j = 1:2]
@test ishermitian(A'A)

Expand Down
2 changes: 1 addition & 1 deletion test/bitarray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1201,7 +1201,7 @@ b1 = triu(bitrand(n2, n1))

b1 = bitrand(n1,n1)
b1 |= b1.'
@check_bit_operation issym(b1) Bool
@check_bit_operation issymmetric(b1) Bool
@check_bit_operation ishermitian(b1) Bool

b1 = bitrand(n1)
Expand Down
2 changes: 1 addition & 1 deletion test/blas.jl
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ for elty in [Float32, Float64, Complex64, Complex128]

A = rand(elty,n,n)
A = A + A.'
@test issym(A)
@test issymmetric(A)
@test_approx_eq triu(BLAS.syr!('U',α,x,copy(A))) triu(A + α*x*x.')
@test_throws DimensionMismatch BLAS.syr!('U',α,ones(elty,n+1),copy(A))

Expand Down
4 changes: 2 additions & 2 deletions test/linalg/arnoldi.jl
Original file line number Diff line number Diff line change
Expand Up @@ -102,13 +102,13 @@ let A6965 = [
end

# Example from Quantum Information Theory
import Base: size, issym, ishermitian
import Base: size, issymmetric, ishermitian

type CPM{T<:Base.LinAlg.BlasFloat}<:AbstractMatrix{T} # completely positive map
kraus::Array{T,3} # kraus operator representation
end
size(Phi::CPM)=(size(Phi.kraus,1)^2,size(Phi.kraus,3)^2)
issym(Phi::CPM)=false
issymmetric(Phi::CPM)=false
ishermitian(Phi::CPM)=false
import Base: *
function *{T<:Base.LinAlg.BlasFloat}(Phi::CPM{T},rho::Vector{T})
Expand Down
4 changes: 2 additions & 2 deletions test/linalg/bunchkaufman.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,10 +49,10 @@ debug && println("(Automatic) Bunch-Kaufman factor of indefinite matrix")
end
debug && println("Bunch-Kaufman factors of a pos-def matrix")
for rook in (false, true)
bc2 = bkfact(apd, :U, issym(apd), rook)
bc2 = bkfact(apd, :U, issymmetric(apd), rook)
@test_approx_eq inv(bc2) * apd eye(n)
@test_approx_eq_eps apd * (bc2\b) b 150000ε
@test ishermitian(bc2) == !issym(bc2)
@test ishermitian(bc2) == !issymmetric(bc2)
end

end
Expand Down
4 changes: 2 additions & 2 deletions test/linalg/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -164,12 +164,12 @@ for relty in (Float32, Float64, BigFloat), elty in (relty, Complex{relty})
@test isa(similar(D, Int, (3,2)), Matrix{Int})

#10036
@test issym(D2)
@test issymmetric(D2)
@test ishermitian(D2)
if elty <: Complex
dc = d + im*convert(Vector{elty}, ones(n))
D3 = Diagonal(dc)
@test issym(D3)
@test issymmetric(D3)
@test !ishermitian(D3)
end

Expand Down
Loading