Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make var and std work for Vector{Vector{T}} #23897

Merged
merged 2 commits into from
Oct 2, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 20 additions & 18 deletions base/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -119,10 +119,10 @@ function var(iterable; corrected::Bool=true, mean=nothing)
end
end

centralizedabs2fun(m::Number) = x -> abs2(x - m)
centralize_sumabs2(A::AbstractArray, m::Number) =
centralizedabs2fun(m) = x -> abs2.(x - m)
centralize_sumabs2(A::AbstractArray, m) =
mapreduce(centralizedabs2fun(m), +, A)
centralize_sumabs2(A::AbstractArray, m::Number, ifirst::Int, ilast::Int) =
centralize_sumabs2(A::AbstractArray, m, ifirst::Int, ilast::Int) =
mapreduce_impl(centralizedabs2fun(m), +, A, ifirst, ilast)

function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::AbstractArray) where S
Expand Down Expand Up @@ -164,7 +164,7 @@ function centralize_sumabs2!(R::AbstractArray{S}, A::AbstractArray, means::Abstr
return R
end

function varm(A::AbstractArray{T}, m::Number; corrected::Bool=true) where T
function varm(A::AbstractArray{T}, m; corrected::Bool=true) where T
n = _length(A)
n == 0 && return typeof((abs2(zero(T)) + abs2(zero(T)))/2)(NaN)
return centralize_sumabs2(A, m) / (n - Int(corrected))
Expand Down Expand Up @@ -219,12 +219,12 @@ The mean `mean` over the region may be provided.
var(A::AbstractArray, region; corrected::Bool=true, mean=nothing) =
varm(A, mean === nothing ? Base.mean(A, region) : mean, region; corrected=corrected)

varm(iterable, m::Number; corrected::Bool=true) =
varm(iterable, m; corrected::Bool=true) =
var(iterable, corrected=corrected, mean=m)

## variances over ranges

function varm(v::AbstractRange, m::Number)
function varm(v::AbstractRange, m)
f = first(v) - m
s = step(v)
l = length(v)
Expand Down Expand Up @@ -255,11 +255,11 @@ function sqrt!(A::AbstractArray)
A
end

stdm(A::AbstractArray, m::Number; corrected::Bool=true) =
sqrt(varm(A, m; corrected=corrected))
stdm(A::AbstractArray, m; corrected::Bool=true) =
sqrt.(varm(A, m; corrected=corrected))

std(A::AbstractArray; corrected::Bool=true, mean=nothing) =
sqrt(var(A; corrected=corrected, mean=mean))
sqrt.(var(A; corrected=corrected, mean=mean))

"""
std(v[, region]; corrected::Bool=true, mean=nothing)
Expand All @@ -284,7 +284,7 @@ std(iterable; corrected::Bool=true, mean=nothing) =
sqrt(var(iterable, corrected=corrected, mean=mean))

"""
stdm(v, m::Number; corrected::Bool=true)
stdm(v, m; corrected::Bool=true)

Compute the sample standard deviation of a vector `v`
with known mean `m`. If `corrected` is `true`,
Expand All @@ -296,7 +296,7 @@ scaled with `n` if `corrected` is `false` where `n = length(x)`.
applications requiring the handling of missing data, the
`DataArrays.jl` package is recommended.
"""
stdm(iterable, m::Number; corrected::Bool=true) =
stdm(iterable, m; corrected::Bool=true) =
std(iterable, corrected=corrected, mean=m)


Expand All @@ -321,7 +321,8 @@ _vmean(x::AbstractMatrix, vardim::Int) = mean(x, vardim)

# core functions

unscaled_covzm(x::AbstractVector) = sum(abs2, x)
unscaled_covzm(x::AbstractVector{<:Number}) = sum(abs2, x)
unscaled_covzm(x::AbstractVector) = sum(t -> t*t', x)
unscaled_covzm(x::AbstractMatrix, vardim::Int) = (vardim == 1 ? _conj(x'x) : x * x')

unscaled_covzm(x::AbstractVector, y::AbstractVector) = dot(y, x)
Expand Down Expand Up @@ -349,13 +350,14 @@ function covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1; correcte
end

# covm (with provided mean)

## Use map(t -> t - xmean, x) instead of x .- xmean to allow for Vector{Vector}
## which can't be handled by broadcast
covm(x::AbstractVector, xmean; corrected::Bool=true) =
covzm(x .- xmean; corrected=corrected)
covzm(map(t -> t - xmean, x); corrected=corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, vardim; corrected=corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean; corrected=corrected)
covzm(map(t -> t - xmean, x), map(t -> t - ymean, y); corrected=corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, vardim; corrected=corrected)

Expand Down Expand Up @@ -425,7 +427,7 @@ function cov2cor!(C::AbstractMatrix{T}, xsd::AbstractArray) where T
end
return C
end
function cov2cor!(C::AbstractMatrix, xsd::Number, ysd::AbstractArray)
function cov2cor!(C::AbstractMatrix, xsd, ysd::AbstractArray)
nx, ny = size(C)
length(ysd) == ny || throw(DimensionMismatch("inconsistent dimensions"))
for (j, y) in enumerate(ysd) # fixme (iter): here and in all `cov2cor!` we assume that `C` is efficiently indexed by integers
Expand All @@ -435,7 +437,7 @@ function cov2cor!(C::AbstractMatrix, xsd::Number, ysd::AbstractArray)
end
return C
end
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::Number)
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd)
nx, ny = size(C)
length(xsd) == nx || throw(DimensionMismatch("inconsistent dimensions"))
for j in 1:ny
Expand Down Expand Up @@ -475,7 +477,7 @@ corzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int=1) =

corm(x::AbstractVector{T}, xmean) where {T} = one(real(T))
corm(x::AbstractMatrix, xmean, vardim::Int=1) = corzm(x .- xmean, vardim)
function corm(x::AbstractVector, mx::Number, y::AbstractVector, my::Number)
function corm(x::AbstractVector, mx, y::AbstractVector, my)
n = length(x)
length(y) == n || throw(DimensionMismatch("inconsistent lengths"))
n > 0 || throw(ArgumentError("correlation only defined for non-empty vectors"))
Expand Down
7 changes: 7 additions & 0 deletions test/statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -454,3 +454,10 @@ end
@test isequal(mean(a01, 1) , fill(NaN, 1, 1))
@test isequal(mean(a10, 2) , fill(NaN, 1, 1))
end

@testset "cov/var/std of Vector{Vector}" begin
x = [[2,4,6],[4,6,8]]
@test var(x) ≈ vec(var([x[1] x[2]], 2))
@test std(x) ≈ vec(std([x[1] x[2]], 2))
@test cov(x) ≈ cov([x[1] x[2]], 2)
end