Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

faster _log_ext #44717

Merged
merged 5 commits into from
Apr 4, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions base/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1001,15 +1001,21 @@ end
y == yint && return x^yint
#numbers greater than 2*inv(eps(T)) must be even, and the pow will overflow
y >= 2*inv(eps()) && return x^(typemax(Int64)-1)
xu = reinterpret(UInt64, x)
x<0 && y > -4e18 && throw_exp_domainerror(x) # |y| is small enough that y isn't an integer
x == 1 && return 1.0
return pow_body(x, y)
x === 1.0 && return 1.0
x==0 && return abs(y)*Inf*(!(y>0))
!isfinite(x) && return x*(y>0 || isnan(x)) # x is inf or NaN
if xu < (UInt64(1)<<52) # x is subnormal
xu = reinterpret(UInt64, x * 0x1p52) # normalize x
xu &= ~sign_mask(Float64)
xu -= UInt64(52) << 52 # mess with the exponent
end
return pow_body(xu, y)
end

@inline function pow_body(x::Float64, y::Float64)
!isfinite(x) && return x*(y>0 || isnan(x))
x==0 && return abs(y)*Inf*(!(y>0))
logxhi,logxlo = Base.Math._log_ext(x)
@inline function pow_body(xu::UInt64, y::Float64)
logxhi,logxlo = Base.Math._log_ext(xu)
xyhi, xylo = two_mul(logxhi,y)
xylo = muladd(logxlo, y, xylo)
hi = xyhi+xylo
Expand Down
225 changes: 182 additions & 43 deletions base/special/log.jl
Original file line number Diff line number Diff line change
Expand Up @@ -397,51 +397,190 @@ function log1p(x::Float32)
end
end


@inline function log_ext_kernel(x_hi::Float64, x_lo::Float64)
c1hi = 0.666666666666666629659233
hi_order = evalpoly(x_hi, (0.400000000000000077715612, 0.285714285714249172087875,
0.222222222230083560345903, 0.181818180850050775676507,
0.153846227114512262845736, 0.13332981086846273921509,
0.117754809412463995466069, 0.103239680901072952701192,
0.116255524079935043668677))
res_hi, res_lo = two_mul(hi_order, x_hi)
res_lo = fma(x_lo, hi_order, res_lo)
ans_hi = c1hi + res_hi
ans_lo = ((c1hi - ans_hi) + res_hi) + (res_lo + 3.80554962542412056336616e-17)
return ans_hi, ans_lo
#function make_compact_table(N)
# table = Tuple{UInt64,Float64}[]
# lo, hi = 0x1.69555p-1, 0x1.69555p0
# for i in 0:N-1
# # I am not fully sure why this is the right formula to use, but it apparently is
# center = i/(2*N) + lo < 1 ? (i+.5)/(2*N) + lo : (i+.5)/N + hi -1
# invc = Float64(center < 1 ? round(N/center)/N : round(2*N/center)/(N*2))
# c = inv(big(invc))
# logc = Float64(round(0x1p43*log(c))/0x1p43)
# logctail = reinterpret(Float64, Float64(log(c) - logc))
# p1 = (reinterpret(UInt64,invc) >> 45) % UInt8
# push!(table, (p1|reinterpret(UInt64,logc),logctail))
# end
# return Tuple(table)
#end
#const t_log_table_compat = make_compact_table(128)
const t_log_table_compat = (
(0xbfd62c82f2b9c8b5, 5.929407345889625e-15),
(0xbfd5d1bdbf5808b4, -2.544157440035963e-14),
(0xbfd57677174558b3, -3.443525940775045e-14),
(0xbfd51aad872df8b2, -2.500123826022799e-15),
(0xbfd4be5f957778b1, -8.929337133850617e-15),
(0xbfd4618bc21c60b0, 1.7625431312172662e-14),
(0xbfd404308686a8af, 1.5688303180062087e-15),
(0xbfd3a64c556948ae, 2.9655274673691784e-14),
(0xbfd347dd9a9880ad, 3.7923164802093147e-14),
(0xbfd2e8e2bae120ac, 3.993416384387844e-14),
(0xbfd2895a13de88ab, 1.9352855826489123e-14),
(0xbfd2895a13de88ab, 1.9352855826489123e-14),
(0xbfd22941fbcf78aa, -1.9852665484979036e-14),
(0xbfd1c898c16998a9, -2.814323765595281e-14),
(0xbfd1675cababa8a8, 2.7643769993528702e-14),
(0xbfd1058bf9ae48a7, -4.025092402293806e-14),
(0xbfd0a324e27390a6, -1.2621729398885316e-14),
(0xbfd0402594b4d0a5, -3.600176732637335e-15),
(0xbfd0402594b4d0a5, -3.600176732637335e-15),
(0xbfcfb9186d5e40a4, 1.3029797173308663e-14),
(0xbfcef0adcbdc60a3, 4.8230289429940886e-14),
(0xbfce27076e2af0a2, -2.0592242769647135e-14),
(0xbfcd5c216b4fc0a1, 3.149265065191484e-14),
(0xbfcc8ff7c79aa0a0, 4.169796584527195e-14),
(0xbfcc8ff7c79aa0a0, 4.169796584527195e-14),
(0xbfcbc286742d909f, 2.2477465222466186e-14),
(0xbfcaf3c94e80c09e, 3.6507188831790577e-16),
(0xbfca23bc1fe2b09d, -3.827767260205414e-14),
(0xbfca23bc1fe2b09d, -3.827767260205414e-14),
(0xbfc9525a9cf4509c, -4.7641388950792196e-14),
(0xbfc87fa06520d09b, 4.9278276214647115e-14),
(0xbfc7ab890210e09a, 4.9485167661250996e-14),
(0xbfc7ab890210e09a, 4.9485167661250996e-14),
(0xbfc6d60fe719d099, -1.5003333854266542e-14),
(0xbfc5ff3070a79098, -2.7194441649495324e-14),
(0xbfc5ff3070a79098, -2.7194441649495324e-14),
(0xbfc526e5e3a1b097, -2.99659267292569e-14),
(0xbfc44d2b6ccb8096, 2.0472357800461955e-14),
(0xbfc44d2b6ccb8096, 2.0472357800461955e-14),
(0xbfc371fc201e9095, 3.879296723063646e-15),
(0xbfc29552f81ff094, -3.6506824353335045e-14),
(0xbfc1b72ad52f6093, -5.4183331379008994e-14),
(0xbfc1b72ad52f6093, -5.4183331379008994e-14),
(0xbfc0d77e7cd09092, 1.1729485484531301e-14),
(0xbfc0d77e7cd09092, 1.1729485484531301e-14),
(0xbfbfec9131dbe091, -3.811763084710266e-14),
(0xbfbe27076e2b0090, 4.654729747598445e-14),
(0xbfbe27076e2b0090, 4.654729747598445e-14),
(0xbfbc5e548f5bc08f, -2.5799991283069902e-14),
(0xbfba926d3a4ae08e, 3.7700471749674615e-14),
(0xbfba926d3a4ae08e, 3.7700471749674615e-14),
(0xbfb8c345d631a08d, 1.7306161136093256e-14),
(0xbfb8c345d631a08d, 1.7306161136093256e-14),
(0xbfb6f0d28ae5608c, -4.012913552726574e-14),
(0xbfb51b073f06208b, 2.7541708360737882e-14),
(0xbfb51b073f06208b, 2.7541708360737882e-14),
(0xbfb341d7961be08a, 5.0396178134370583e-14),
(0xbfb341d7961be08a, 5.0396178134370583e-14),
(0xbfb16536eea38089, 1.8195060030168815e-14),
(0xbfaf0a30c0118088, 5.213620639136504e-14),
(0xbfaf0a30c0118088, 5.213620639136504e-14),
(0xbfab42dd71198087, 2.532168943117445e-14),
(0xbfab42dd71198087, 2.532168943117445e-14),
(0xbfa77458f632c086, -5.148849572685811e-14),
(0xbfa77458f632c086, -5.148849572685811e-14),
(0xbfa39e87b9fec085, 4.6652946995830086e-15),
(0xbfa39e87b9fec085, 4.6652946995830086e-15),
(0xbf9f829b0e780084, -4.529814257790929e-14),
(0xbf9f829b0e780084, -4.529814257790929e-14),
(0xbf97b91b07d58083, -4.361324067851568e-14),
(0xbf8fc0a8b0fc0082, -1.7274567499706107e-15),
(0xbf8fc0a8b0fc0082, -1.7274567499706107e-15),
(0xbf7fe02a6b100081, -2.298941004620351e-14),
(0xbf7fe02a6b100081, -2.298941004620351e-14),
(0x0000000000000080, 0.0),
(0x0000000000000080, 0.0),
(0x3f8010157589007e, -1.4902732911301337e-14),
(0x3f9020565893807c, -3.527980389655325e-14),
(0x3f98492528c9007a, -4.730054772033249e-14),
(0x3fa0415d89e74078, 7.580310369375161e-15),
(0x3fa466aed42e0076, -4.9893776716773285e-14),
(0x3fa894aa149fc074, -2.262629393030674e-14),
(0x3faccb73cdddc072, -2.345674491018699e-14),
(0x3faeea31c006c071, -1.3352588834854848e-14),
(0x3fb1973bd146606f, -3.765296820388875e-14),
(0x3fb3bdf5a7d1e06d, 5.1128335719851986e-14),
(0x3fb5e95a4d97a06b, -5.046674438470119e-14),
(0x3fb700d30aeac06a, 3.1218748807418837e-15),
(0x3fb9335e5d594068, 3.3871241029241416e-14),
(0x3fbb6ac88dad6066, -1.7376727386423858e-14),
(0x3fbc885801bc4065, 3.957125899799804e-14),
(0x3fbec739830a2063, -5.2849453521890294e-14),
(0x3fbfe89139dbe062, -3.767012502308738e-14),
(0x3fc1178e8227e060, 3.1859736349078334e-14),
(0x3fc1aa2b7e23f05f, 5.0900642926060466e-14),
(0x3fc2d1610c86805d, 8.710783796122478e-15),
(0x3fc365fcb015905c, 6.157896229122976e-16),
(0x3fc4913d8333b05a, 3.821577743916796e-14),
(0x3fc527e5e4a1b059, 3.9440046718453496e-14),
(0x3fc6574ebe8c1057, 2.2924522154618074e-14),
(0x3fc6f0128b757056, -3.742530094732263e-14),
(0x3fc7898d85445055, -2.5223102140407338e-14),
(0x3fc8beafeb390053, -1.0320443688698849e-14),
(0x3fc95a5adcf70052, 1.0634128304268335e-14),
(0x3fca93ed3c8ae050, -4.3425422595242564e-14),
(0x3fcb31d8575bd04f, -1.2527395755711364e-14),
(0x3fcbd087383be04e, -5.204008743405884e-14),
(0x3fcc6ffbc6f0104d, -3.979844515951702e-15),
(0x3fcdb13db0d4904b, -4.7955860343296286e-14),
(0x3fce530effe7104a, 5.015686013791602e-16),
(0x3fcef5ade4dd0049, -7.252318953240293e-16),
(0x3fcf991c6cb3b048, 2.4688324156011588e-14),
(0x3fd07138604d5846, 5.465121253624792e-15),
(0x3fd0c42d67616045, 4.102651071698446e-14),
(0x3fd1178e8227e844, -4.996736502345936e-14),
(0x3fd16b5ccbacf843, 4.903580708156347e-14),
(0x3fd1bf99635a6842, 5.089628039500759e-14),
(0x3fd214456d0eb841, 1.1782016386565151e-14),
(0x3fd2bef07cdc903f, 4.727452940514406e-14),
(0x3fd314f1e1d3603e, -4.4204083338755686e-14),
(0x3fd36b6776be103d, 1.548345993498083e-14),
(0x3fd3c2527733303c, 2.1522127491642888e-14),
(0x3fd419b423d5e83b, 1.1054030169005386e-14),
(0x3fd4718dc271c83a, -5.534326352070679e-14),
(0x3fd4c9e09e173039, -5.351646604259541e-14),
(0x3fd522ae0738a038, 5.4612144489920215e-14),
(0x3fd57bf753c8d037, 2.8136969901227338e-14),
(0x3fd5d5bddf596036, -1.156568624616423e-14))

@inline function log_tab_unpack(t::UInt64)
invc = UInt64(t&UInt64(0xff)|0x1ff00)<<45
logc = t&(~UInt64(0xff))
return (reinterpret(Float64, invc), reinterpret(Float64, logc))
end

# Log implementation that returns 2 numbers which sum to give true value with about 68 bits of precision
# Implimentation adapted from SLEEFPirates.jl
# Since `log` only makes sense for positive exponents, we speed up the implimentation by stealing the sign bit
# of the input for an extra bit of the exponent which is used to normalize subnormal inputs.
# Does not normalize results.
# Must be caused with positive finite arguments
function _log_ext(d::Float64)
m, e = significand(d), exponent(d)
if m > 1.5
m *= 0.5
e += 1.0
end
# x = (m-1)/(m+1)
mp1hi = m + 1.0
mp1lo = m + (1.0 - mp1hi)
invy = inv(mp1hi)
xhi = (m - 1.0) * invy
xlo = fma(-xhi, mp1lo, fma(-xhi, mp1hi, m - 1.0)) * invy
x2hi, x2lo = two_mul(xhi, xhi)
x2lo = muladd(xhi, xlo * 2.0, x2lo)
thi, tlo = log_ext_kernel(x2hi, x2lo)

shi = 0.6931471805582987 * e
xhi2 = xhi * 2.0
shinew = muladd(xhi, 2.0, shi)
slo = muladd(1.6465949582897082e-12, e, muladd(xlo, 2.0, (((shi - shinew) + xhi2))))
shi = shinew
x3hi, x3lo = two_mul(x2hi, xhi)
x3lo = muladd(x2hi, xlo, muladd(xhi, x2lo,x3lo))
x3thi, x3tlo = two_mul(x3hi, thi)
x3tlo = muladd(x3hi, tlo, muladd(x3lo, thi, x3tlo))
anshi = x3thi + shi
anslo = slo + x3tlo - ((anshi - shi) - x3thi)
return anshi, anslo
# Adapted and modified from https://github.com/ARM-software/optimized-routines/blob/master/math/pow.c
# Copyright (c) 2018-2020, Arm Limited. (which is also MIT licensed)
# note that this isn't an exact translation as this version compacts the table to reduce cache pressure.
function _log_ext(xu)
# x = 2^k z; where z is in range [0x1.69555p-1,0x1.69555p-0) and exact.
# The range is split into N subintervals.
# The ith subinterval contains z and c is near the center of the interval.
tmp = reinterpret(Int64, xu - 0x3fe6955500000000) #0x1.69555p-1
i = (tmp >> 45) & 127
z = reinterpret(Float64, xu - (tmp & 0xfff0000000000000))
k = Float64(tmp >> 52)
# log(x) = k*Ln2 + log(c) + log1p(z/c-1).
t, logctail = t_log_table_compat[i+1]
invc, logc = log_tab_unpack(t)
# Note: invc is j/N or j/N/2 where j is an integer in [N,2N) and
# |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.
r = fma(z, invc, -1.0)
# k*Ln2 + log(c) + r.
t1 = muladd(k, 0.6931471805598903, logc) #ln(2) hi part
t2 = t1 + r
lo1 = muladd(k, 5.497923018708371e-14, logctail) #ln(2) lo part
lo2 = t1 - t2 + r
ar = -0.5 * r
ar2, lo3 = two_mul(r, ar)
# k*Ln2 + log(c) + r + .5*r*r.
hi = t2 + ar2
lo4 = t2 - hi + ar2
p = evalpoly(r, (-0x1.555555555556p-1, 0x1.0000000000006p-1, -0x1.999999959554ep-2, 0x1.555555529a47ap-2, -0x1.2495b9b4845e9p-2, 0x1.0002b8b263fc3p-2))
lo = lo1 + lo2 + lo3 + muladd(r*ar2, p, lo4)
return hi, lo
end
7 changes: 7 additions & 0 deletions test/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1332,6 +1332,13 @@ end
@test abs(expected-got) <= 1.3*eps(T(expected)) || (x,y)
end
end
for _ in 1:2^10
x=rand(T)*floatmin(T); y=rand(T)*2-1
got, expected = x^y, widen(x)^y
if isfinite(eps(T(expected)))
@test abs(expected-got) <= 1.3*eps(T(expected)) || (x,y)
end
end
# test (-x)^y for y larger than typemax(Int)
@test T(-1)^floatmax(T) === T(1)
@test prevfloat(T(-1))^floatmax(T) === T(Inf)
Expand Down