Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve type inference of MixtureModel #1308

Merged
merged 6 commits into from
May 2, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Distributions"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
authors = ["JuliaStats"]
version = "0.24.18"
version = "0.25.0"

[deps]
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
Expand Down
74 changes: 10 additions & 64 deletions src/mixtures/mixturemodel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,11 +19,11 @@ A mixture of distributions, parametrized on:
* `C` distribution family of the mixture
* `CT` the type for probabilities of the prior
"""
struct MixtureModel{VF<:VariateForm,VS<:ValueSupport,C<:Distribution,CT<:Real} <: AbstractMixtureModel{VF,VS,C}
struct MixtureModel{VF<:VariateForm,VS<:ValueSupport,C<:Distribution,CT<:Categorical} <: AbstractMixtureModel{VF,VS,C}
components::Vector{C}
prior::Categorical{CT}
prior::CT

function MixtureModel{VF,VS,C}(cs::Vector{C}, pri::Categorical{CT}) where {VF,VS,C,CT}
function MixtureModel{VF,VS,C}(cs::Vector{C}, pri::CT) where {VF,VS,C,CT}
length(cs) == ncategories(pri) ||
error("The number of components does not match the length of prior.")
new{VF,VS,C,CT}(cs, pri)
Expand Down Expand Up @@ -171,16 +171,8 @@ minimum(d::MixtureModel) = minimum([minimum(dci) for dci in d.components])
maximum(d::MixtureModel) = maximum([maximum(dci) for dci in d.components])

function mean(d::UnivariateMixture)
K = ncomponents(d)
p = probs(d)
m = 0.0
for i = 1:K
pi = p[i]
if pi > 0.0
c = component(d, i)
m += mean(c) * pi
end
end
m = sum(pi * mean(component(d, i)) for (i, pi) in enumerate(p) if !iszero(pi))
return m
end

Expand Down Expand Up @@ -281,38 +273,22 @@ end
#### Evaluation

function insupport(d::AbstractMixtureModel, x::AbstractVector)
K = ncomponents(d)
p = probs(d)
@inbounds for i in eachindex(p)
pi = p[i]
if pi > 0.0 && insupport(component(d, i), x)
return true
end
end
return false
return any(insupport(component(d, i), x) for (i, pi) in enumerate(p) if !iszero(pi))
end

function _cdf(d::UnivariateMixture, x::Real)
K = ncomponents(d)
p = probs(d)
r = 0.0
@inbounds for i in eachindex(p)
pi = p[i]
if pi > 0.0
c = component(d, i)
r += pi * cdf(c, x)
end
end
r = sum(pi * cdf(component(d, i), x) for (i, pi) in enumerate(p) if !iszero(pi))
return r
end

cdf(d::UnivariateMixture{Continuous}, x::Real) = _cdf(d, x)
cdf(d::UnivariateMixture{Discrete}, x::Integer) = _cdf(d, x)

function _mixpdf1(d::AbstractMixtureModel, x)
ps = probs(d)
cs = components(d)
return sum((ps[i] > 0) * (ps[i] * pdf(cs[i], x)) for i in eachindex(ps))
p = probs(d)
return sum(pi * pdf(component(d, i), x) for (i, pi) in enumerate(p) if !iszero(pi))
end

function _mixpdf!(r::AbstractArray, d::AbstractMixtureModel, x)
Expand All @@ -335,39 +311,9 @@ function _mixpdf!(r::AbstractArray, d::AbstractMixtureModel, x)
end

function _mixlogpdf1(d::AbstractMixtureModel, x)
# using the formula below for numerical stability
#
# logpdf(d, x) = log(sum_i pri[i] * pdf(cs[i], x))
# = log(sum_i pri[i] * exp(logpdf(cs[i], x)))
# = log(sum_i exp(logpri[i] + logpdf(cs[i], x)))
# = m + log(sum_i exp(logpri[i] + logpdf(cs[i], x) - m))
#
# m is chosen to be the maximum of logpri[i] + logpdf(cs[i], x)
# such that the argument of exp is in a reasonable range
#

K = ncomponents(d)
p = probs(d)
lp = Vector{eltype(p)}(undef, K)
m = -Inf # m <- the maximum of log(p(cs[i], x)) + log(pri[i])
@inbounds for i in eachindex(p)
pi = p[i]
if pi > 0.0
# lp[i] <- log(p(cs[i], x)) + log(pri[i])
lp_i = logpdf(component(d, i), x) + log(pi)
lp[i] = lp_i
if lp_i > m
m = lp_i
end
end
end
v = 0.0
@inbounds for i = 1:K
if p[i] > 0.0
v += exp(lp[i] - m)
end
end
return m + log(v)
lp = logsumexp(log(pi) + logpdf(component(d, i), x) for (i, pi) in enumerate(p) if !iszero(pi))
return lp
end

function _mixlogpdf!(r::AbstractArray, d::AbstractMixtureModel, x)
Expand Down
46 changes: 23 additions & 23 deletions test/mixture.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,15 +18,15 @@ function test_mixture(g::UnivariateMixture, n::Int, ns::Int,
end

K = ncomponents(g)
pr = probs(g)
pr = @inferred(probs(g))
@assert length(pr) == K

# mean
mu = 0.0
for k = 1:K
mu += pr[k] * mean(component(g, k))
end
@test mean(g) ≈ mu
@test @inferred(mean(g)) ≈ mu

# evaluation of cdf
cf = zeros(T, n)
Expand All @@ -38,7 +38,7 @@ function test_mixture(g::UnivariateMixture, n::Int, ns::Int,
end

for i = 1:n
@test cdf(g, X[i]) ≈ cf[i]
@test @inferred(cdf(g, X[i])) ≈ cf[i]
end
@test cdf.(g, X) ≈ cf

Expand All @@ -58,16 +58,16 @@ function test_mixture(g::UnivariateMixture, n::Int, ns::Int,
mix_lp0 = log.(mix_p0)

for i = 1:n
@test pdf(g, X[i]) ≈ mix_p0[i]
@test logpdf(g, X[i]) ≈ mix_lp0[i]
@test componentwise_pdf(g, X[i]) ≈ vec(P0[i,:])
@test componentwise_logpdf(g, X[i]) ≈ vec(LP0[i,:])
@test @inferred(pdf(g, X[i])) ≈ mix_p0[i]
@test @inferred(logpdf(g, X[i])) ≈ mix_lp0[i]
@test @inferred(componentwise_pdf(g, X[i])) ≈ vec(P0[i,:])
@test @inferred(componentwise_logpdf(g, X[i])) ≈ vec(LP0[i,:])
end

@test pdf.(g, X) ≈ mix_p0
@test logpdf.(g, X) ≈ mix_lp0
@test componentwise_pdf(g, X) ≈ P0
@test componentwise_logpdf(g, X) ≈ LP0
@test @inferred(map(Base.Fix1(pdf, g), X)) ≈ mix_p0
@test @inferred(map(Base.Fix1(logpdf, g), X)) ≈ mix_lp0
@test @inferred(componentwise_pdf(g, X)) ≈ P0
@test @inferred(componentwise_logpdf(g, X)) ≈ LP0

# sampling
if (T <: AbstractFloat)
Expand All @@ -94,15 +94,15 @@ function test_mixture(g::MultivariateMixture, n::Int, ns::Int,
end

K = ncomponents(g)
pr = probs(g)
pr = @inferred(probs(g))
@assert length(pr) == K

# mean
mu = zeros(length(g))
for k = 1:K
mu .+= pr[k] .* mean(component(g, k))
end
@test mean(g) ≈ mu
@test @inferred(mean(g)) ≈ mu

# evaluation
P0 = zeros(n, K)
Expand All @@ -121,20 +121,20 @@ function test_mixture(g::MultivariateMixture, n::Int, ns::Int,

for i = 1:n
x_i = X[:,i]
@test pdf(g, x_i) ≈ mix_p0[i]
@test logpdf(g, x_i) ≈ mix_lp0[i]
@test componentwise_pdf(g, x_i) ≈ vec(P0[i,:])
@test componentwise_logpdf(g, x_i) ≈ vec(LP0[i,:])
@test @inferred(pdf(g, x_i)) ≈ mix_p0[i]
@test @inferred(logpdf(g, x_i)) ≈ mix_lp0[i]
@test @inferred(componentwise_pdf(g, x_i)) ≈ vec(P0[i,:])
@test @inferred(componentwise_logpdf(g, x_i)) ≈ vec(LP0[i,:])
end
#=
@show g
@show size(X)
@show size(mix_p0)
=#
@test pdf(g, X) ≈ mix_p0
@test logpdf(g, X) ≈ mix_lp0
@test componentwise_pdf(g, X) ≈ P0
@test componentwise_logpdf(g, X) ≈ LP0
@test @inferred(pdf(g, X)) ≈ mix_p0
@test @inferred(logpdf(g, X)) ≈ mix_lp0
@test @inferred(componentwise_pdf(g, X)) ≈ P0
@test @inferred(componentwise_logpdf(g, X)) ≈ LP0

# sampling
if ismissing(rng)
Expand Down Expand Up @@ -172,8 +172,8 @@ end
"rand(rng, ...)" => MersenneTwister(123))

@testset "Testing UnivariateMixture" begin
g_u = MixtureModel(Normal, [(0.0, 1.0), (2.0, 1.0), (-4.0, 1.5)], [0.2, 0.5, 0.3])
@test isa(g_u, MixtureModel{Univariate, Continuous, Normal})
g_u = MixtureModel(Normal{Float64}, [(0.0, 1.0), (2.0, 1.0), (-4.0, 1.5)], [0.2, 0.5, 0.3])
@test isa(g_u, MixtureModel{Univariate,Continuous,<:Normal})
@test ncomponents(g_u) == 3
test_mixture(g_u, 1000, 10^6, rng)
test_params(g_u)
Expand Down