Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move test utilities to an extension #1791

Merged
merged 6 commits into from
Nov 3, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Distributions"
uuid = "31c24e10-a181-5473-b8eb-7969acd0382f"
authors = ["JuliaStats"]
version = "0.25.102"
version = "0.25.103"

[deps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
Expand All @@ -22,10 +22,12 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
DensityInterface = "b429d917-457f-4dbc-8f4c-0cc954292b1d"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[extensions]
DistributionsChainRulesCoreExt = "ChainRulesCore"
DistributionsDensityInterfaceExt = "DensityInterface"
DistributionsTestExt = "Test"

[compat]
ChainRulesCore = "1"
Expand Down
101 changes: 101 additions & 0 deletions ext/DistributionsTestExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
module DistributionsTestExt

using Distributions
using Distributions.LinearAlgebra
using Distributions.Random
using Test

__rand(::Nothing, args...) = rand(args...)
__rand(rng::AbstractRNG, args...) = rand(rng, args...)

__rand!(::Nothing, args...) = rand!(args...)
__rand!(rng::AbstractRNG, args...) = rand!(rng, args...)

"""
test_mvnormal(
g::AbstractMvNormal,
n_tsamples::Int=10^6,
rng::Union{Random.AbstractRNG, Nothing}=nothing,
)

Test that `AbstractMvNormal` implements the expected API.

!!! Note
On Julia >= 1.9, you have to load the `Test` standard library to be able to use
this function.
"""
function Distributions.TestUtils.test_mvnormal(
g::AbstractMvNormal, n_tsamples::Int=10^6, rng::Union{AbstractRNG, Nothing}=nothing
)
d = length(g)
μ = mean(g)
Σ = cov(g)
@test length(μ) == d
@test size(Σ) == (d, d)
@test var(g) ≈ diag(Σ)
@test entropy(g) ≈ 0.5 * logdet(2π * ℯ * Σ)
ldcov = logdetcov(g)
@test ldcov ≈ logdet(Σ)
vs = diag(Σ)
@test g == typeof(g)(params(g)...)
@test g == deepcopy(g)
@test minimum(g) == fill(-Inf, d)
@test maximum(g) == fill(Inf, d)
@test extrema(g) == (minimum(g), maximum(g))
@test isless(extrema(g)...)

# test sampling for AbstractMatrix (here, a SubArray):
subX = view(__rand(rng, d, 2d), :, 1:d)
@test isa(__rand!(rng, g, subX), SubArray)

# sampling
@test isa(__rand(rng, g), Vector{Float64})
X = __rand(rng, g, n_tsamples)
emp_mu = vec(mean(X, dims=2))
Z = X .- emp_mu
emp_cov = (Z * Z') * inv(n_tsamples)

mean_atols = 8 .* sqrt.(vs ./ n_tsamples)
cov_atols = 10 .* sqrt.(vs .* vs') ./ sqrt.(n_tsamples)
for i = 1:d
@test isapprox(emp_mu[i], μ[i], atol=mean_atols[i])
end
for i = 1:d, j = 1:d
@test isapprox(emp_cov[i,j], Σ[i,j], atol=cov_atols[i,j])
end

X = rand(MersenneTwister(14), g, n_tsamples)
Y = rand(MersenneTwister(14), g, n_tsamples)
@test X == Y
emp_mu = vec(mean(X, dims=2))
Z = X .- emp_mu
emp_cov = (Z * Z') * inv(n_tsamples)
for i = 1:d
@test isapprox(emp_mu[i] , μ[i] , atol=mean_atols[i])
end
for i = 1:d, j = 1:d
@test isapprox(emp_cov[i,j], Σ[i,j], atol=cov_atols[i,j])
end


# evaluation of sqmahal & logpdf
U = X .- μ
sqm = vec(sum(U .* (Σ \ U), dims=1))
for i = 1:min(100, n_tsamples)
@test sqmahal(g, X[:,i]) ≈ sqm[i]
end
@test sqmahal(g, X) ≈ sqm

lp = -0.5 .* sqm .- 0.5 * (d * log(2.0 * pi) + ldcov)
for i = 1:min(100, n_tsamples)
@test logpdf(g, X[:,i]) ≈ lp[i]
end
@test logpdf(g, X) ≈ lp

# log likelihood
@test loglikelihood(g, X) ≈ sum(i -> Distributions._logpdf(g, X[:,i]), 1:n_tsamples)
@test loglikelihood(g, X[:, 1]) ≈ logpdf(g, X[:, 1])
@test loglikelihood(g, [X[:, i] for i in axes(X, 2)]) ≈ loglikelihood(g, X)
end

end # module
7 changes: 4 additions & 3 deletions src/Distributions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -316,15 +316,16 @@ include("mixtures/unigmm.jl")
# Interface for StatsAPI
include("statsapi.jl")

# Testing utilities for other packages which implement distributions.
include("test_utils.jl")

# Extensions: Implementation of DensityInterface and ChainRulesCore API
if !isdefined(Base, :get_extension)
include("../ext/DistributionsChainRulesCoreExt/DistributionsChainRulesCoreExt.jl")
include("../ext/DistributionsDensityInterfaceExt.jl")
include("../ext/DistributionsTestExt.jl")
end

# Testing utilities for other packages which implement distributions.
include("test_utils.jl")

include("deprecates.jl")

"""
Expand Down
103 changes: 13 additions & 90 deletions src/test_utils.jl
Original file line number Diff line number Diff line change
@@ -1,96 +1,19 @@
module TestUtils

using Distributions
using LinearAlgebra
using Random
using Test


__rand(::Nothing, args...) = rand(args...)
__rand(rng::AbstractRNG, args...) = rand(rng, args...)

__rand!(::Nothing, args...) = rand!(args...)
__rand!(rng::AbstractRNG, args...) = rand!(rng, args...)

"""
test_mvnormal(
g::AbstractMvNormal, n_tsamples::Int=10^6, rng::AbstractRNG=Random.default_rng()
)

Test that `AbstractMvNormal` implements the expected API.
"""
function test_mvnormal(
g::AbstractMvNormal, n_tsamples::Int=10^6, rng::Union{AbstractRNG, Nothing}=nothing
)
d = length(g)
μ = mean(g)
Σ = cov(g)
@test length(μ) == d
@test size(Σ) == (d, d)
@test var(g) ≈ diag(Σ)
@test entropy(g) ≈ 0.5 * logdet(2π * ℯ * Σ)
ldcov = logdetcov(g)
@test ldcov ≈ logdet(Σ)
vs = diag(Σ)
@test g == typeof(g)(params(g)...)
@test g == deepcopy(g)
@test minimum(g) == fill(-Inf, d)
@test maximum(g) == fill(Inf, d)
@test extrema(g) == (minimum(g), maximum(g))
@test isless(extrema(g)...)

# test sampling for AbstractMatrix (here, a SubArray):
subX = view(__rand(rng, d, 2d), :, 1:d)
@test isa(__rand!(rng, g, subX), SubArray)

# sampling
@test isa(__rand(rng, g), Vector{Float64})
X = __rand(rng, g, n_tsamples)
emp_mu = vec(mean(X, dims=2))
Z = X .- emp_mu
emp_cov = (Z * Z') * inv(n_tsamples)

mean_atols = 8 .* sqrt.(vs ./ n_tsamples)
cov_atols = 10 .* sqrt.(vs .* vs') ./ sqrt.(n_tsamples)
for i = 1:d
@test isapprox(emp_mu[i], μ[i], atol=mean_atols[i])
end
for i = 1:d, j = 1:d
@test isapprox(emp_cov[i,j], Σ[i,j], atol=cov_atols[i,j])
import ..Distributions

function test_mvnormal end

if isdefined(Base, :get_extension) && isdefined(Base.Experimental, :register_error_hint)
function __init__()
# Better error message if users forget to load Test
Base.Experimental.register_error_hint(MethodError) do io, exc, _, _
if exc.f === test_mvnormal &&
(Base.get_extension(Distributions, :DistributionsTestExt) === nothing)
print(io, "\nDid you forget to load Test?")
end
end
end

X = rand(MersenneTwister(14), g, n_tsamples)
Y = rand(MersenneTwister(14), g, n_tsamples)
@test X == Y
emp_mu = vec(mean(X, dims=2))
Z = X .- emp_mu
emp_cov = (Z * Z') * inv(n_tsamples)
for i = 1:d
@test isapprox(emp_mu[i] , μ[i] , atol=mean_atols[i])
end
for i = 1:d, j = 1:d
@test isapprox(emp_cov[i,j], Σ[i,j], atol=cov_atols[i,j])
end


# evaluation of sqmahal & logpdf
U = X .- μ
sqm = vec(sum(U .* (Σ \ U), dims=1))
for i = 1:min(100, n_tsamples)
@test sqmahal(g, X[:,i]) ≈ sqm[i]
end
@test sqmahal(g, X) ≈ sqm

lp = -0.5 .* sqm .- 0.5 * (d * log(2.0 * pi) + ldcov)
for i = 1:min(100, n_tsamples)
@test logpdf(g, X[:,i]) ≈ lp[i]
end
@test logpdf(g, X) ≈ lp

# log likelihood
@test loglikelihood(g, X) ≈ sum(i -> Distributions._logpdf(g, X[:,i]), 1:n_tsamples)
@test loglikelihood(g, X[:, 1]) ≈ logpdf(g, X[:, 1])
@test loglikelihood(g, [X[:, i] for i in axes(X, 2)]) ≈ loglikelihood(g, X)
end

end