Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix inconsistent return types of quantile etc. #1805

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions src/univariate/discrete/bernoulli.jl
Original file line number Diff line number Diff line change
Expand Up @@ -96,11 +96,13 @@ ccdf(d::Bernoulli, x::Bool) = x ? zero(d.p) : succprob(d)
ccdf(d::Bernoulli, x::Int) = x < 0 ? one(d.p) :
x < 1 ? succprob(d) : zero(d.p)

function quantile(d::Bernoulli{T}, p::Real) where T<:Real
0 <= p <= 1 ? (p <= failprob(d) ? zero(T) : one(T)) : T(NaN)
function quantile(d::Bernoulli, p::Real)
_check_quantile_arg(p)
p <= failprob(d) ? false : true
end
function cquantile(d::Bernoulli{T}, p::Real) where T<:Real
0 <= p <= 1 ? (p >= succprob(d) ? zero(T) : one(T)) : T(NaN)
function cquantile(d::Bernoulli, p::Real)
_check_cquantile_arg(p)
p >= succprob(d) ? false : true
end

mgf(d::Bernoulli, t::Real) = failprob(d) + succprob(d) * exp(t)
Expand Down
8 changes: 4 additions & 4 deletions src/univariate/discrete/bernoullilogit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -87,12 +87,12 @@ logccdf(d::BernoulliLogit, x::Bool) = x ? oftype(float(d.logitp), -Inf) : logsuc
logccdf(d::BernoulliLogit, x::Int) = x < 0 ? zero(float(d.logitp)) : (x < 1 ? logsuccprob(d) : oftype(float(d.logitp), -Inf))

function quantile(d::BernoulliLogit, p::Real)
T = float(partype(d))
0 <= p <= 1 ? (p <= failprob(d) ? zero(T) : one(T)) : T(NaN)
_check_quantile_arg(p)
p <= failprob(d) ? false : true
end
function cquantile(d::BernoulliLogit, p::Real)
T = float(partype(d))
0 <= p <= 1 ? (p >= succprob(d) ? zero(T) : one(T)) : T(NaN)
_check_cquantile_arg(q)
p >= succprob(d) ? false : true
end

mgf(d::BernoulliLogit, t::Real) = failprob(d) + exp(t + logsuccprob(d))
Expand Down
55 changes: 54 additions & 1 deletion src/univariate/discrete/binomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,60 @@ end

#### Evaluation & Sampling

@_delegate_statsfuns Binomial binom n p
# We rely on Rmath for (log)pdf, (log)cdf, and quantile functions
# We do not use the `@_delegate_statsfuns` macro to work around some issues in the
# quantile functions such as `StatsFuns.binominvcdf(10, 0.0, 1.0) = 10`.
pdf(d::Binomial, x::Real) = binompdf(d.n, d.p, x)
logpdf(d::Binomial, x::Real) = binomlogpdf(d.n, d.p, x)
cdf(d::Binomial, x::Real) = binomcdf(d.n, d.p, x)
ccdf(d::Binomial, x::Real) = binomccdf(d.n, d.p, x)
logcdf(d::Binomial, x::Real) = binomlogcdf(d.n, d.p, x)
logccdf(d::Binomial, x::Real) = binomlogccdf(d.n, d.p, x)

function quantile(d::Binomial, q::Real)::Int
_check_quantile_arg(q)
if iszero(d.p)
return 0
elseif isone(d.p)
return d.n
else
return binominvcdf(d.n, d.p, q)
end
end
function cquantile(d::Binomial, q::Real)::Int
_check_cquantile_arg(q)
if iszero(d.p)
return 0
elseif isone(d.p)
return d.n
else
return binominvccdf(d.n, d.p, q)
end
end
function invlogcdf(d::Binomial, lq::Real)::Int
_check_invlogcdf_arg(lq)
if iszero(d.p)
return 0
elseif isone(d.p)
return d.n
elseif isinf(lq)
return 0
else
return binominvlogcdf(d.n, d.p, lq)
end
end
function invlogccdf(d::Binomial, lq::Real)::Int
_check_invlogccdf_arg(lq)
if iszero(d.p)
return 0
elseif isone(d.p)
return d.n
elseif isinf(lq)
return d.n
else
return binominvlogccdf(d.n, d.p, lq)
end
end

function rand(rng::AbstractRNG, d::Binomial)
p, n = d.p, d.n
Expand Down
5 changes: 4 additions & 1 deletion src/univariate/discrete/dirac.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,10 @@ logcdf(d::Dirac, x::Real) = x < d.value ? -Inf : isnan(x) ? NaN : 0.0
ccdf(d::Dirac, x::Real) = x < d.value ? 1.0 : isnan(x) ? NaN : 0.0
logccdf(d::Dirac, x::Real) = x < d.value ? 0.0 : isnan(x) ? NaN : -Inf

quantile(d::Dirac{T}, p::Real) where {T} = 0 <= p <= 1 ? d.value : T(NaN)
function quantile(d::Dirac, p::Real)
_check_quantile_arg(p)
return d.value
end

mgf(d::Dirac, t) = exp(t * d.value)
cgf(d::Dirac, t) = t*d.value
Expand Down
5 changes: 4 additions & 1 deletion src/univariate/discrete/discreteuniform.jl
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,10 @@ function cdf(d::DiscreteUniform, x::Int)
end
end

quantile(d::DiscreteUniform, p::Real) = iszero(p) ? d.a : d.a - 1 + ceil(Int, p * span(d))
function quantile(d::DiscreteUniform, p::Real)
_check_quantile_arg(p)
iszero(p) ? d.a : d.a - 1 + ceil(Int, p * span(d))
end

function mgf(d::DiscreteUniform, t::Real)
a, b = d.a, d.b
Expand Down
30 changes: 16 additions & 14 deletions src/univariate/discrete/geometric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -105,21 +105,23 @@ logcdf(d::Geometric, x::Int) = log1mexp(log1p(-d.p) * max(x + 1, 0))
logccdf(d::Geometric, x::Real) = logccdf_int(d, x)
logccdf(d::Geometric, x::Int) = log1p(-d.p) * max(x + 1, 0)

quantile(d::Geometric, p::Real) = invlogccdf(d, log1p(-p))

cquantile(d::Geometric, p::Real) = invlogccdf(d, log(p))

invlogcdf(d::Geometric, lp::Real) = invlogccdf(d, log1mexp(lp))
function quantile(d::Geometric, p::Real)
_check_quantile_arg(p)
return invlogccdf(d, log1p(-p))
end
function cquantile(d::Geometric, p::Real)
_check_cquantile_arg(p)
return invlogccdf(d, log(p))
end

function invlogccdf(d::Geometric{T}, lp::Real) where T<:Real
if (lp > zero(d.p)) || isnan(lp)
return T(NaN)
elseif isinf(lp)
return T(Inf)
elseif lp == zero(d.p)
return zero(T)
end
max(ceil(lp/log1p(-d.p)) - 1, zero(T))
function invlogcdf(d::Geometric, lp::Real)
_check_invlogcdf_arg(lp)
return invlogccdf(d, log1mexp(lp))
end
function invlogccdf(d::Geometric, lp::Real)
_check_invlogccdf_arg(lp)
z = lp/log1p(-d.p) - 1
return ceil(Int, max(z, zero(z)))
end

function laplace_transform(d::Geometric, t)
Expand Down
28 changes: 24 additions & 4 deletions src/univariate/discrete/negativebinomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -112,10 +112,30 @@ cdf(d::NegativeBinomial, x::Real) = nbinomcdf(d.r, d.p, x)
ccdf(d::NegativeBinomial, x::Real) = nbinomccdf(d.r, d.p, x)
logcdf(d::NegativeBinomial, x::Real) = nbinomlogcdf(d.r, d.p, x)
logccdf(d::NegativeBinomial, x::Real) = nbinomlogccdf(d.r, d.p, x)
quantile(d::NegativeBinomial, q::Real) = convert(Int, nbinominvcdf(d.r, d.p, q))
cquantile(d::NegativeBinomial, q::Real) = convert(Int, nbinominvccdf(d.r, d.p, q))
invlogcdf(d::NegativeBinomial, lq::Real) = convert(Int, nbinominvlogcdf(d.r, d.p, lq))
invlogccdf(d::NegativeBinomial, lq::Real) = convert(Int, nbinominvlogccdf(d.r, d.p, lq))
function quantile(d::NegativeBinomial, q::Real)::Int
_check_quantile_arg(q)
return nbinominvcdf(d.r, d.p, q)
end
function cquantile(d::NegativeBinomial, q::Real)::Int
_check_cquantile_arg(q)
return nbinominvccdf(d.r, d.p, q)
end
function invlogcdf(d::NegativeBinomial, lq::Real)::Int
_check_invlogcdf_arg(lq)
if isinf(lq)
return nbinominvcdf(d.r, d.p, zero(lq))
else
return nbinominvlogcdf(d.r, d.p, lq)
end
end
function invlogccdf(d::NegativeBinomial, lq::Real)::Int
_check_invlogccdf_arg(lq)
if isinf(lq)
return nbinominvccdf(d.r, d.p, zero(lq))
else
return nbinominvlogccdf(d.r, d.p, lq)
end
end

## sampling
function rand(rng::AbstractRNG, d::NegativeBinomial)
Expand Down
30 changes: 15 additions & 15 deletions src/univariate/discrete/noncentralhypergeometric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,23 +9,23 @@ abstract type NoncentralHypergeometric{T<:Real} <: DiscreteUnivariateDistributio

# Functions

function quantile(d::NoncentralHypergeometric{T}, q::Real) where T<:Real
if !(zero(q) <= q <= one(q))
T(NaN)
else
range = support(d)
if q > 1/2
q = 1 - q
range = reverse(range)
end
function quantile(d::NoncentralHypergeometric, q::Real)
_check_quantile_arg(q)

qsum, i = zero(T), 0
while qsum < q
i += 1
qsum += pdf(d, range[i])
end
range[i]
range = support(d)
if q > 1/2
q = 1 - q
range = reverse(range)
end

# Support must not be empty
r, state = iterate(range)
qsum = pdf(d, r)
while qsum < q && (r_state = iterate(range, state)) !== nothing
r, state = r_state
qsum += pdf(d, r)
end
return r
end

params(d::NoncentralHypergeometric) = (d.ns, d.nf, d.n, d.ω)
Expand Down
79 changes: 72 additions & 7 deletions src/univariates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,10 @@ quantile(d::UnivariateDistribution, p::Real)

The complementary quantile value, i.e. `quantile(d, 1-q)`.
"""
cquantile(d::UnivariateDistribution, p::Real) = quantile(d, 1.0 - p)
function cquantile(d::UnivariateDistribution, p::Real)
_check_cquantile_arg(p)
quantile(d, 1 - p)
end

"""
invlogcdf(d::UnivariateDistribution, lp::Real)
Expand All @@ -406,7 +409,10 @@ The (generalized) inverse function of [`logcdf`](@ref).
For a given `lp ≤ 0`, `invlogcdf(d, lp)` is the smallest value `x` in the support of `d` for
which `logcdf(d, x) ≥ lp`.
"""
invlogcdf(d::UnivariateDistribution, lp::Real) = quantile(d, exp(lp))
function invlogcdf(d::UnivariateDistribution, lp::Real)
_check_invlogcdf_arg(lp)
quantile(d, exp(lp))
end

"""
invlogccdf(d::UnivariateDistribution, lp::Real)
Expand All @@ -416,7 +422,10 @@ The (generalized) inverse function of [`logccdf`](@ref).
For a given `lp ≤ 0`, `invlogccdf(d, lp)` is the smallest value `x` in the support of `d`
for which `logccdf(d, x) ≤ lp`.
"""
invlogccdf(d::UnivariateDistribution, lp::Real) = quantile(d, -expm1(lp))
function invlogccdf(d::UnivariateDistribution, lp::Real)
_check_invlogccdf_arg(lp)
quantile(d, -expm1(lp))
end

# gradlogpdf

Expand Down Expand Up @@ -619,6 +628,38 @@ function integerunitrange_logccdf(d::DiscreteUnivariateDistribution, x::Integer)
return result
end

### Error messages

const QUANTILE_ARG_ERROR = "`Distributions.quantile(d, p)` only accepts arguments `p` in `[0, 1]`."
const CQUANTILE_ARG_ERROR = "`Distributions.cquantile(d, p)` only accepts arguments `p` in `[0, 1]`."
const INVLOGCDF_ARG_ERROR = "`Distributions.invlogcdf(d, lp)` only accepts non-negative arguments `lp`."
const INVLOGCCDF_ARG_ERROR = "`Distributions.invlogccdf(d, lp)` only accepts non-negative arguments `lp`."

function _check_quantile_arg(p::Real)
if !(zero(p) <= p <= oneunit(p))
throw(DomainError(p, QUANTILE_ARG_ERROR))
end
nothing
end
function _check_cquantile_arg(p::Real)
if !(zero(p) <= p <= oneunit(p))
throw(DomainError(p, CQUANTILE_ARG_ERROR))
end
nothing
end
function _check_invlogcdf_arg(lp::Real)
if !(lp <= zero(lp))
throw(DomainError(lp, INVLOGCDF_ARG_ERROR))
end
nothing
end
function _check_invlogccdf_arg(lp::Real)
if !(lp <= zero(lp))
throw(DomainError(lp, INVLOGCDF_ARG_ERROR))
end
nothing
end

### macros to use StatsFuns for method implementation

macro _delegate_statsfuns(D, fpre, psyms...)
Expand Down Expand Up @@ -649,10 +690,34 @@ macro _delegate_statsfuns(D, fpre, psyms...)
$Distributions.ccdf(d::$D, x::Real) = $(fccdf)($(pargs...), x)
$Distributions.logccdf(d::$D, x::Real) = $(flogccdf)($(pargs...), x)

$Distributions.quantile(d::$D, q::Real) = convert($T, $(finvcdf)($(pargs...), q))
$Distributions.cquantile(d::$D, q::Real) = convert($T, $(finvccdf)($(pargs...), q))
$Distributions.invlogcdf(d::$D, lq::Real) = convert($T, $(finvlogcdf)($(pargs...), lq))
$Distributions.invlogccdf(d::$D, lq::Real) = convert($T, $(finvlogccdf)($(pargs...), lq))
function $Distributions.quantile(d::$D, q::Real)::$T
_check_quantile_arg(q)
return $(finvcdf)($(pargs...), q)
end
function $Distributions.cquantile(d::$D, q::Real)::$T
_check_cquantile_arg(q)
return $(finvccdf)($(pargs...), q)
end

# There is a bug in some functions in StatsFuns.RFunctions/Rmath:
# For `lq = -Inf` they return `NaN`
# We work around this issue by falling back to quantile/cquantile
function $Distributions.invlogcdf(d::$D, lq::Real)::$T
_check_invlogcdf_arg(lq)
if isinf(lq)
return $(finvcdf)($(pargs...), zero(lq))
else
return $(finvlogcdf)($(pargs...), lq)
end
end
function $Distributions.invlogccdf(d::$D, lq::Real)::$T
_check_invlogccdf_arg(lq)
if isinf(lq)
return $(finvccdf)($(pargs...), zero(lq))
else
return $(finvlogccdf)($(pargs...), lq)
end
end
end
end

Expand Down
20 changes: 11 additions & 9 deletions test/testutils.jl
Original file line number Diff line number Diff line change
Expand Up @@ -447,6 +447,7 @@ end


function test_evaluation(d::DiscreteUnivariateDistribution, vs::AbstractVector, testquan::Bool=true)
T = eltype(vs)
nv = length(vs)
p = Vector{Float64}(undef, nv)
c = Vector{Float64}(undef, nv)
Expand Down Expand Up @@ -477,11 +478,10 @@ function test_evaluation(d::DiscreteUnivariateDistribution, vs::AbstractVector,
if testquan
ep = 1.0e-8
if p[i] > 2 * ep # ensure p[i] is large enough to guarantee a reliable result
@test quantile(d, c[i] - ep) == v
@test cquantile(d, cc[i] + ep) == v
@test invlogcdf(d, lc[i] - ep) == v
if 0.0 < c[i] < 1.0
@test invlogccdf(d, lcc[i] + ep) == v
for (f, z) in ((quantile, c[i] - ep), (cquantile, cc[i] + ep), (invlogcdf, lc[i] - ep), (invlogccdf, lcc[i] + ep))
fz = @inferred(f(d, z))
@test fz isa T
@test fz == v
end
end
end
Expand All @@ -499,6 +499,7 @@ end


function test_evaluation(d::ContinuousUnivariateDistribution, vs::AbstractVector, testquan::Bool=true)
T = eltype(vs)
nv = length(vs)
p = Vector{Float64}(undef, nv)
c = Vector{Float64}(undef, nv)
Expand Down Expand Up @@ -534,10 +535,11 @@ function test_evaluation(d::ContinuousUnivariateDistribution, vs::AbstractVector
qtol = isa(d, InverseGaussian) ? 1.0e-4 : 1.0e-10
qtol = isa(d, StudentizedRange) ? 1.0e-5 : qtol
if p[i] > 1.0e-6
@test isapprox(quantile(d, c[i]) , v, atol=qtol * (abs(v) + 1.0))
@test isapprox(cquantile(d, cc[i]) , v, atol=qtol * (abs(v) + 1.0))
@test isapprox(invlogcdf(d, lc[i]) , v, atol=qtol * (abs(v) + 1.0))
@test isapprox(invlogccdf(d, lcc[i]), v, atol=qtol * (abs(v) + 1.0))
for (f, z) in ((quantile, c[i]), (cquantile, cc[i]), (invlogcdf, lc[i]), (invlogccdf, lcc[i]))
fz = @inferred(f(d, z))
@test fz isa T
@test fz ≈ v atol = qtol * (abs(v) + 1.0)
end
end
end
end
Expand Down
Loading
Loading