Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use StatsAPI.pvalue + StatsAPI.HypothesisTest #297

Merged
merged 4 commits into from
May 31, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 5 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,22 +1,25 @@
name = "HypothesisTests"
uuid = "09f84164-cd44-5f33-b23f-e6b0d136a0d5"
version = "0.10.13"
version = "0.11.0"
ararslan marked this conversation as resolved.
Show resolved Hide resolved

[deps]
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Rmath = "79098fc4-a85e-5d69-aa6a-4863f24498fa"
Roots = "f2b01f46-fcfa-551c-844a-d8ac1e96c665"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsAPI = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"

[compat]
Combinatorics = "1"
Distributions = "0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25"
Distributions = "0.25.90"
ararslan marked this conversation as resolved.
Show resolved Hide resolved
Rmath = "0.5, 0.6, 0.7"
Roots = "0.7, 0.8, 1.0, 2"
StatsAPI = "1.6"
StatsBase = "0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34"
julia = "1.3"

Expand Down
74 changes: 10 additions & 64 deletions src/HypothesisTests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,76 +25,23 @@
module HypothesisTests

using Statistics, Random, LinearAlgebra
using Distributions, Roots, StatsBase
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why change this?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Initially it seemed as if we could get rid of the StatsBase dependency completely. It turned out that this is not the case but the five functions loaded below are needed + StatsBase.PValue for printing. Nevertheless, as with the imports of Combinatorics and Rmath in the lines below, explicitly importing these five functions seemed a bit clearer.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't personally find listing out every symbol to be particularly clarifying or useful but I know not everyone shares that opinion. :) In this case I'd prefer not to change the StatsBase bit as part of this PR as it seems like an unrelated change but I don't feel too strongly.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't have a completely strong opinion on this matter either. I wasn't 100% sure what changes you had in mind exactly, but I reverted this line and some related changes below. Is it better now?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It looks ✨ a m a z i n g ✨, apologies for the pedantry and for the delay, this got lost amidst a bunch of other notifications

using Distributions, Roots
using Combinatorics: combinations, permutations
using Rmath: pwilcox, psignrank

import StatsBase.confint
import StatsAPI
using StatsAPI: HypothesisTest, confint, dof, nobs, pvalue
import StatsBase
using StatsBase: autocor, autocov, counts, mean_and_std, partialcor

export testname, pvalue, confint
abstract type HypothesisTest end
using Printf: @printf

export testname, pvalue, confint, dof, nobs

check_same_length(x::AbstractVector, y::AbstractVector) = if length(x) != length(y)
throw(DimensionMismatch("Vectors must be the same length"))
end

"""
confint(test::HypothesisTest; level = 0.95, tail = :both)

Compute a confidence interval C with coverage `level`.

If `tail` is `:both` (default), then a two-sided confidence interval is returned. If `tail`
is `:left` or `:right`, then a one-sided confidence interval is returned.

!!! note
Most of the implemented confidence intervals are *strongly consistent*, that is, the
confidence interval with coverage `level` does not contain the test statistic under
``h_0`` if and only if the corresponding test rejects the null hypothesis
``h_0: θ = θ_0``:
```math
C (x, level) = \\{θ : p_θ (x) > 1 - level\\},
```
where ``p_θ`` is the [`pvalue`](@ref) of the corresponding test.
"""
function confint end

"""
pvalue(test::HypothesisTest; tail = :both)

Compute the p-value for a given significance test.

If `tail` is `:both` (default), then the p-value for the two-sided test is returned. If
`tail` is `:left` or `:right`, then a one-sided test is performed.
"""
function pvalue end

# Basic function for finding a p-value given a distribution and tail
function pvalue(dist::ContinuousUnivariateDistribution, x::Number; tail=:both)
check_tail(tail)

if tail == :both
p = 2 * min(cdf(dist, x), ccdf(dist, x))
min(p, oneunit(p)) # if P(X = x) > 0, then possibly p > 1
elseif tail == :left
cdf(dist, x)
else # tail == :right
ccdf(dist, x)
end
end

function pvalue(dist::DiscreteUnivariateDistribution, x::Number; tail=:both)
check_tail(tail)

if tail == :both
p = 2 * min(ccdf(dist, x-1), cdf(dist, x))
min(p, oneunit(p)) # if P(X = x) > 0, then possibly p > 1
elseif tail == :left
cdf(dist, x)
else # tail == :right
ccdf(dist, x-1)
end
end

function check_level(level::Float64)
if level >= 1 || level <= 0.5
throw(ArgumentError("coverage level $level not in range (0.5, 1)"))
Expand All @@ -114,7 +61,7 @@ function Base.show(_io::IO, test::T) where T<:HypothesisTest
println(io, repeat("-", length(testname(test))))

# population details
has_ci = applicable(StatsBase.confint, test)
has_ci = applicable(confint, test)
(param_name, param_under_h0, param_estimate) = population_param_of_interest(test)
println(io, "Population details:")
println(io, " parameter of interest: $param_name")
Expand All @@ -126,7 +73,7 @@ function Base.show(_io::IO, test::T) where T<:HypothesisTest
println(io)

if has_ci
ci = map(x -> round.(x; sigdigits=4, base=10), StatsBase.confint(test))
ci = map(x -> round.(x; sigdigits=4, base=10), confint(test))
print(io, " 95% confidence interval: ")
show(io, ci)
println(io)
Expand Down Expand Up @@ -176,7 +123,6 @@ function show_params(io::IO, test::T, ident="") where T<:HypothesisTest
end
end

include("deprecated.jl")
include("common.jl")

include("binomial.jl")
Expand Down
4 changes: 2 additions & 2 deletions src/anderson_darling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ function show_params(io::IO, x::OneSampleADTest, ident = "")
end

### G. and J. Marsaglia, "Evaluating the Anderson-Darling Distribution", Journal of Statistical Software, 2004
function pvalue(t::OneSampleADTest)
function StatsAPI.pvalue(t::OneSampleADTest)
g1(x) = sqrt(x)*(1.0-x)*(49.0x-102.0)
g2(x) = -0.00022633 + (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864x)x)x)x)x
g3(x) = -130.2137 + (745.2337 - (1705.091 - (1950.646 - (1116.360 - 255.7844x)x)x)x)x
Expand Down Expand Up @@ -238,7 +238,7 @@ function pvalueasym(x::KSampleADTest)
return exp(lp0)/(1 + exp(lp0))
end

pvalue(x::KSampleADTest) = x.nsim == 0 ? pvalueasym(x) : pvaluesim(x)
StatsAPI.pvalue(x::KSampleADTest) = x.nsim == 0 ? pvalueasym(x) : pvaluesim(x)

function adkvals(Z⁺, N, samples)
k = length(samples)
Expand Down
2 changes: 1 addition & 1 deletion src/augmented_dickey_fuller.jl
Original file line number Diff line number Diff line change
Expand Up @@ -217,4 +217,4 @@ function show_params(io::IO, x::ADFTest, ident)
println(io)
end

pvalue(x::ADFTest) = HypothesisTests.pvalue(Normal(0, 1), adf_pv_aux(x.stat, x.deterministic); tail=:left)
StatsAPI.pvalue(x::ADFTest) = pvalue(Normal(0, 1), adf_pv_aux(x.stat, x.deterministic); tail=:left)
6 changes: 3 additions & 3 deletions src/bartlett.jl
Original file line number Diff line number Diff line change
Expand Up @@ -45,12 +45,12 @@ function BartlettTest(X::AbstractMatrix, Y::AbstractMatrix)
return BartlettTest(L′, p, nx, ny)
end

StatsBase.nobs(B::BartlettTest) = (B.nx, B.ny)
StatsBase.dof(B::BartlettTest) = div(B.p * (B.p + 1), 2)
StatsAPI.nobs(B::BartlettTest) = (B.nx, B.ny)
devmotion marked this conversation as resolved.
Show resolved Hide resolved
StatsAPI.dof(B::BartlettTest) = div(B.p * (B.p + 1), 2)

testname(::BartlettTest) = "Bartlett's Test for Equality of Covariance Matrices"
default_tail(::BartlettTest) = :right
pvalue(B::BartlettTest; tail=:right) = pvalue(Chisq(dof(B)), B.L′, tail=tail)
StatsAPI.pvalue(B::BartlettTest; tail=:right) = pvalue(Chisq(dof(B)), B.L′, tail=tail)

function show_params(io::IO, B::BartlettTest, indent="")
println(io, indent, "number of observations: ", nobs(B))
Expand Down
12 changes: 6 additions & 6 deletions src/binomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ function show_params(io::IO, x::BinomialTest, ident="")
println(io, ident, "number of successes: $(x.x)")
end

pvalue(x::BinomialTest; tail=:both) = pvalue(Binomial(x.n, x.p), x.x; tail=tail)
StatsAPI.pvalue(x::BinomialTest; tail=:both) = pvalue(Binomial(x.n, x.p), x.x; tail=tail)

# Confidence interval
"""
Expand Down Expand Up @@ -102,13 +102,13 @@ of the following methods. Possible values for `method` are:
* [Binomial confidence interval on Wikipedia](https://en.wikipedia.org/wiki/
Binomial_proportion_confidence_interval)
"""
function StatsBase.confint(x::BinomialTest; level::Float64=0.95, tail=:both, method=:clopper_pearson)
function StatsAPI.confint(x::BinomialTest; level::Float64=0.95, tail=:both, method=:clopper_pearson)
check_level(level)

if tail == :left
(0.0, StatsBase.confint(x, level=1-(1-level)*2, method=method)[2])
(0.0, confint(x, level=1-(1-level)*2, method=method)[2])
elseif tail == :right
(StatsBase.confint(x, level=1-(1-level)*2, method=method)[1], 1.0)
(confint(x, level=1-(1-level)*2, method=method)[1], 1.0)
elseif tail == :both
if method == :clopper_pearson
ci_clopper_pearson(x, 1-level)
Expand Down Expand Up @@ -218,9 +218,9 @@ function show_params(io::IO, x::SignTest, ident="")
println(io, ident, text2, x.x)
end

pvalue(x::SignTest; tail=:both) = pvalue(Binomial(x.n, 0.5), x.x; tail=tail)
StatsAPI.pvalue(x::SignTest; tail=:both) = pvalue(Binomial(x.n, 0.5), x.x; tail=tail)

function StatsBase.confint(x::SignTest; level::Float64=0.95, tail=:both)
function StatsAPI.confint(x::SignTest; level::Float64=0.95, tail=:both)
check_level(level)

if tail == :left
Expand Down
4 changes: 2 additions & 2 deletions src/box_test.jl
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ function show_params(io::IO, x::BoxPierceTest, ident)
println(io, ident, "Q statistic: ", x.Q)
end

pvalue(x::BoxPierceTest) = pvalue(Chisq(x.lag-x.dof), x.Q; tail=:right)
StatsAPI.pvalue(x::BoxPierceTest) = pvalue(Chisq(x.lag-x.dof), x.Q; tail=:right)

#Ljung-Box test

Expand Down Expand Up @@ -120,4 +120,4 @@ function show_params(io::IO, x::LjungBoxTest, ident)
println(io, ident, "Q statistic: ", x.Q)
end

pvalue(x::LjungBoxTest) = pvalue(Chisq(x.lag-x.dof), x.Q; tail=:right)
StatsAPI.pvalue(x::LjungBoxTest) = pvalue(Chisq(x.lag-x.dof), x.Q; tail=:right)
2 changes: 1 addition & 1 deletion src/breusch_godfrey.jl
Original file line number Diff line number Diff line change
Expand Up @@ -76,4 +76,4 @@ function show_params(io::IO, x::BreuschGodfreyTest, ident)
println(io, ident, "T*R^2 statistic: ", x.BG)
end

pvalue(x::BreuschGodfreyTest) = pvalue(Chisq(x.lag), x.BG; tail=:right)
StatsAPI.pvalue(x::BreuschGodfreyTest) = pvalue(Chisq(x.lag), x.BG; tail=:right)
6 changes: 3 additions & 3 deletions src/circular.jl
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ function show_params(io::IO, x::RayleighTest, ident="")
println(io, ident, "test statistic: $(x.Rbar^2 * x.n)")
end

function pvalue(x::RayleighTest)
function StatsAPI.pvalue(x::RayleighTest)
Z = x.Rbar^2 * x.n
x.n > 1e6 ? exp(-Z) :
exp(-Z)*(1+(2*Z-Z^2)/(4*x.n)-(24*Z - 132*Z^2 + 76*Z^3 - 9*Z^4)/(288*x.n^2))
Expand Down Expand Up @@ -135,7 +135,7 @@ function tlinear_Z(x::FisherTLinearAssociation)
end

# p-values
function pvalue(x::FisherTLinearAssociation; tail=:both)
function StatsAPI.pvalue(x::FisherTLinearAssociation; tail=:both)
n = length(x.theta)
if n == 0
return NaN
Expand Down Expand Up @@ -218,7 +218,7 @@ function show_params(io::IO, x::JammalamadakaCircularCorrelation, ident="")
println(io, ident, "test statistic: $(x.Z)")
end

pvalue(x::JammalamadakaCircularCorrelation; tail=:both) = pvalue(Normal(), x.Z; tail=tail)
StatsAPI.pvalue(x::JammalamadakaCircularCorrelation; tail=:both) = pvalue(Normal(), x.Z; tail=tail)

## GENERAL

Expand Down
8 changes: 4 additions & 4 deletions src/correlation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -67,10 +67,10 @@ function population_param_of_interest(p::CorrelationTest)
(param, zero(p.r), p.r)
end

StatsBase.nobs(p::CorrelationTest) = p.n
StatsBase.dof(p::CorrelationTest) = p.n - 2 - p.k
StatsAPI.nobs(p::CorrelationTest) = p.n
StatsAPI.dof(p::CorrelationTest) = p.n - 2 - p.k

function StatsBase.confint(test::CorrelationTest{T}, level::Float64=0.95) where T
function StatsAPI.confint(test::CorrelationTest{T}, level::Float64=0.95) where T
dof(test) > 1 || return (-one(T), one(T)) # Otherwise we can get NaNs
q = quantile(Normal(), 1 - (1-level) / 2)
fisher = atanh(test.r)
Expand All @@ -81,7 +81,7 @@ function StatsBase.confint(test::CorrelationTest{T}, level::Float64=0.95) where
end

default_tail(::CorrelationTest) = :both
pvalue(test::CorrelationTest; tail=:both) = pvalue(TDist(dof(test)), test.t, tail=tail)
StatsAPI.pvalue(test::CorrelationTest; tail=:both) = pvalue(TDist(dof(test)), test.t, tail=tail)

function show_params(io::IO, test::CorrelationTest, indent="")
println(io, indent, "number of observations: ", nobs(test))
Expand Down
12 changes: 0 additions & 12 deletions src/deprecated.jl

This file was deleted.

2 changes: 1 addition & 1 deletion src/durbin_watson.jl
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ function pan_algorithm(a::AbstractArray, x::Float64, m::Int, n::Int)

end

function pvalue(x::DurbinWatsonTest; tail=:both)
function StatsAPI.pvalue(x::DurbinWatsonTest; tail=:both)

exact_problem_flag = 0
if (x.p_compute == :ndep && x.n <= 100) || x.p_compute == :exact
Expand Down
2 changes: 1 addition & 1 deletion src/f.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ function show_params(io::IO, x::VarianceFTest, ident)
println(io, ident, "degrees of freedom: [$(x.df_x), $(x.df_y)]")
end

function pvalue(x::VarianceFTest; tail=:both)
function StatsAPI.pvalue(x::VarianceFTest; tail=:both)
dist = FDist(x.df_x, x.df_y)
if tail == :both
return 1 - 2*abs(cdf(dist, x.F) - 0.5)
Expand Down
8 changes: 4 additions & 4 deletions src/fisher.jl
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ For `tail = :both`, possible values for `method` are:
Blaker’s exact tests". Biostatistics, Volume 11, Issue 2, 1 April 2010, Pages 373–374,
[link](https://doi.org/10.1093/biostatistics/kxp050)
"""
function pvalue(x::FisherExactTest; tail=:both, method=:central)
function StatsAPI.pvalue(x::FisherExactTest; tail=:both, method=:central)
if tail == :both && method != :central
if method == :minlike
p = pvalue_both_minlike(x)
Expand Down Expand Up @@ -179,7 +179,7 @@ Fisher's non-central hypergeometric distribution. For `tail = :both`, the only
Blaker’s exact tests". Biostatistics, Volume 11, Issue 2, 1 April 2010, Pages 373–374,
[link](https://doi.org/10.1093/biostatistics/kxp050)
"""
function StatsBase.confint(x::FisherExactTest; level::Float64=0.95, tail=:both, method=:central)
function StatsAPI.confint(x::FisherExactTest; level::Float64=0.95, tail=:both, method=:central)
check_level(level)
if x.a == x.c == 0 || x.b == x.d == 0
return (0.0, Inf)
Expand All @@ -203,8 +203,8 @@ function StatsBase.confint(x::FisherExactTest; level::Float64=0.95, tail=:both,
end
elseif tail == :both
if method == :central
(StatsBase.confint(x, level=1-(1-level)/2, tail=:right)[1],
StatsBase.confint(x, level=1-(1-level)/2, tail=:left)[2])
(confint(x, level=1-(1-level)/2, tail=:right)[1],
confint(x, level=1-(1-level)/2, tail=:left)[2])
else
throw(ArgumentError("method=$(method) is not implemented yet"))
end
Expand Down
14 changes: 7 additions & 7 deletions src/hotelling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ export OneSampleHotellingT2Test, EqualCovHotellingT2Test, UnequalCovHotellingT2T
abstract type HotellingT2TestTest <: HypothesisTest end

default_tail(::HotellingT2TestTest) = :right
pvalue(T::HotellingT2TestTest; tail=:right) = pvalue(FDist(dof(T)...), T.F, tail=tail)
StatsAPI.pvalue(T::HotellingT2TestTest; tail=:right) = pvalue(FDist(dof(T)...), T.F, tail=tail)

function show_params(io::IO, T::HotellingT2TestTest, indent="")
println(io, indent, "number of observations: ", nobs(T))
Expand Down Expand Up @@ -42,8 +42,8 @@ struct OneSampleHotellingT2Test <: HotellingT2TestTest
S::Matrix
end

StatsBase.nobs(T::OneSampleHotellingT2Test) = T.n
StatsBase.dof(T::OneSampleHotellingT2Test) = (T.p, T.n - T.p)
StatsAPI.nobs(T::OneSampleHotellingT2Test) = T.n
StatsAPI.dof(T::OneSampleHotellingT2Test) = (T.p, T.n - T.p)

"""
OneSampleHotellingT2Test(X::AbstractMatrix, μ₀=<zero vector>)
Expand Down Expand Up @@ -112,8 +112,8 @@ function EqualCovHotellingT2Test(X::AbstractMatrix, Y::AbstractMatrix)
return EqualCovHotellingT2Test(T², F, nx, ny, p, Δ, S)
end

StatsBase.nobs(T::EqualCovHotellingT2Test) = (T.nx, T.ny)
StatsBase.dof(T::EqualCovHotellingT2Test) = (T.p, T.nx + T.ny - T.p - 1)
StatsAPI.nobs(T::EqualCovHotellingT2Test) = (T.nx, T.ny)
StatsAPI.dof(T::EqualCovHotellingT2Test) = (T.p, T.nx + T.ny - T.p - 1)

testname(::EqualCovHotellingT2Test) =
"Two sample Hotelling's T² test (equal covariance matrices)"
Expand Down Expand Up @@ -156,8 +156,8 @@ function UnequalCovHotellingT2Test(X::AbstractMatrix, Y::AbstractMatrix)
return UnequalCovHotellingT2Test(T², F, nx, ny, p, ν, Δ, ST)
end

StatsBase.nobs(T::UnequalCovHotellingT2Test) = (T.nx, T.ny)
StatsBase.dof(T::UnequalCovHotellingT2Test) = (T.p, T.ν)
StatsAPI.nobs(T::UnequalCovHotellingT2Test) = (T.nx, T.ny)
StatsAPI.dof(T::UnequalCovHotellingT2Test) = (T.p, T.ν)

testname(::UnequalCovHotellingT2Test) =
"Two sample Hotelling's T² test (unequal covariance matrices)"
Expand Down
2 changes: 1 addition & 1 deletion src/jarque_bera.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,4 +103,4 @@ function show_params(io::IO, x::JarqueBeraTest, ident)
println(io, ident, "JB statistic: ", x.JB)
end

pvalue(x::JarqueBeraTest) = pvalue(Chisq(2), x.JB; tail=:right)
StatsAPI.pvalue(x::JarqueBeraTest) = pvalue(Chisq(2), x.JB; tail=:right)
Loading