-
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
79 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.distributions import Normal | ||
|
||
class Encoder(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, latent_dim): | ||
super(Encoder, self).__init__() | ||
self.fc1 = nn.Linear(input_dim, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc_mu = nn.Linear(hidden_dim, latent_dim) | ||
self.fc_logvar = nn.Linear(hidden_dim, latent_dim) | ||
|
||
def forward(self, x): | ||
x = torch.relu(self.fc1(x)) | ||
x = torch.relu(self.fc2(x)) | ||
mu = self.fc_mu(x) | ||
logvar = self.fc_logvar(x) | ||
return mu, logvar | ||
|
||
class Decoder(nn.Module): | ||
def __init__(self, latent_dim, hidden_dim, output_dim): | ||
super(Decoder, self).__init__() | ||
self.fc1 = nn.Linear(latent_dim, hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim, hidden_dim) | ||
self.fc3 = nn.Linear(hidden_dim, output_dim) | ||
|
||
def forward(self, z): | ||
z = torch.relu(self.fc1(z)) | ||
z = torch.relu(self.fc2(z)) | ||
x_recon = self.fc3(z) | ||
return x_recon | ||
|
||
class VariationalAutoencoder(nn.Module): | ||
def __init__(self, input_dim, hidden_dim, latent_dim): | ||
super(VariationalAutoencoder, self).__init__() | ||
self.encoder = Encoder(input_dim, hidden_dim, latent_dim) | ||
self.decoder = Decoder(latent_dim, hidden_dim, input_dim) | ||
|
||
def forward(self, x): | ||
mu, logvar = self.encoder(x) | ||
z = self.reparameterize(mu, logvar) | ||
x_recon = self.decoder(z) | ||
return x_recon, mu, logvar | ||
|
||
def reparameterize(self, mu, logvar): | ||
std = torch.exp(0.5 * logvar) | ||
eps = torch.randn_like(std) | ||
z = mu + eps * std | ||
return z | ||
|
||
class VariationalAutoencoderModel: | ||
def __init__(self, input_dim, hidden_dim, latent_dim): | ||
self.model = VariationalAutoencoder(input_dim, hidden_dim, latent_dim) | ||
self.criterion = nn.MSELoss() | ||
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001) | ||
|
||
def train(self, X_train): | ||
self.model.train() | ||
for epoch in range(10): | ||
for x in X_train: | ||
x = torch.tensor(x, dtype=torch.float32) | ||
self.optimizer.zero_grad() | ||
x_recon, mu, logvar = self.model(x) | ||
loss = self.loss_function(x, x_recon, mu, logvar) | ||
loss.backward() | ||
self.optimizer.step() | ||
|
||
def loss_function(self, x, x_recon, mu, logvar): | ||
recon_loss = self.criterion(x_recon, x) | ||
kl_loss = 0.5 * torch.sum(torch.exp(logvar) + mu ** 2 - 1 - logvar) | ||
loss = recon_loss + kl_loss | ||
return loss | ||
|
||
def generate(self, z): | ||
self.model.eval() | ||
with torch.no_grad(): | ||
x_recon = self.model.decoder(z) | ||
return x_recon |