Skip to content

KanghoonYoon/hetsgg-torch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Network

This is Official Pytorch Implementation for the paper "Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Network". Kanghoon Yoon, Kibum Kim, Jinyoung Moon, Chanyoung Park. (AAAI-23)

The paper is available at Link

We refer the below baseline code to build our implementation. https://github.com/SHTUPLUS/PySGG

Cite (Bibtex)

  • If you find HetSGG useful in your research, please cite the following paper:
    • Kanghoon Yoon, Kibum Kim, Jinyoung Moon, Chanyoung Park. "Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Network"
    • Bibtex
@article{yoon2023hetsgg,
  title={Unbiased Heterogeneous Scene Graph Generation with Relation-aware Message Passing Network},
  author={Kanghoon Yoon, Kibum Kim, Jinyoung Moon, Chanyoung Park},
  booktitle={AAAI},
  year={2023}
}

Dataset

We follow the same pre-processing strategy described in the below link.

https://github.com/SHTUPLUS/PySGG/blob/main/DATASET.md

You should put datasets into relevant directory.

  • Visual Genome => Datasets/VG
.   
├── Datasets    
│       └── VG    
│           ├── image_data.json   
│           ├── VG-SGG-with-attri.h5
│           ├── VG-SGG-dicts-with-attri.json
│           ├── Category_Type_Info.json
│           └── VG_100k
│                   └── *.png
  • Open Images V6 => Datasets/OI-V6
.   
├── Datasets    
│       └── OI-v6    
│           ├── Category_Type_Info.json   
│           ├── annotations   
│           │       ├── categories_dict.json
│           │       ├── vrd-test-anno.json
│           │       ├── vrd-val-anno.json
│           │       └── vrd-train-anno.json
│           └── images     
│                  └── *.png
  • Open Images V4 => Datasets/OI-V4
.   
├── Datasets    
│       └── OI-v4 
│           ├── Category_Type_Info.json   
│           ├── annotations   
│           │       ├── categories_dict.json
│           │       ├── vrd-val-anno.json
│           │       └── vrd-train-anno.json
│           └── images     
│                  └── *.png

Pretrained Faster R-CNN

We employ the same pretrained Faster R-CNN module corresponding to BGNN

You should download the faster r-cnn model and put the downloaded path in shell/*.sh

Package Install

conda create -n hetsgg python=3.7.7

conda activate hetsgg

conda install -y ipython scipy h5py

pip install ninja yacs cython matplotlib tqdm opencv-python overrides gpustat gitpython ipdb graphviz tensorboardx termcolor scikit-learn==0.23.1

conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0 -c pytorch

pip install torch-scatter==2.0.7 torch-sparse==0.6.9 -f https://data.pyg.org/whl/torch-1.7.0+cu110.html

pip install torch-sparse -f https://data.pyg.org/whl/torch-1.7.0+cu110.html

pip install torch-geometric

git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install

cd ..

git clone https://github.com/NVIDIA/apex.git
cd apex
pip install -v --disable-pip-version-check --no-cache-dir ./

cd ..

python setup.py build develop

Implementation

You should train the HetSGG model in shell/ directory.

  • Train
## SGCls
bash shell/hetsgg_train_sgcls_vg.sh  

## SGGen  
bash shell/hetsgg_train_sggen_vg.sh
  • Test
# You should put the model checkpoint name on .sh
bash shell/hetsgg_test.sh

HetSGG++

You should change the value of model_config in shell/*.sh files to relHetSGGp_vg.

export model_config="relHetSGGp_vg"

Releases

No releases published

Packages

No packages published