Skip to content

I've Made An Easy to Follow install Guide For Sd.ccp its uses way less ram than fastsdcpu and u can use any model and lora or vae it supports sd14,sd15,sdxl,and sd3

Notifications You must be signed in to change notification settings

KintCark/Stable-Diffusion-CCP-Termux-Android

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 

Repository files navigation

Stable-Diffusion-CCP-Termux-Android

I've Made An Easy to Follow install Guide For Sd.ccp its uses way less ram than fastsdcpu and u can use any model and lora or vae it supports sd14,sd15,sdxl,and sd3

AAAAAA YOO! you can install vulkan now it will use the android graphics for gpu acceleration I've updated the guide to install vulkan.

Update: Flux is now Supported

HERES AN EASY SD CCP INSTALL GUIDE THIS BABY RUNS WAY LESS RAM I EVEN CAN USE SDXL AND SD3!!! U CAN EVEN PICK AMOUNT OF THREADS YOUR CPU HAS.

you can use this to quantize any . model you want if u got limited ram just quantize the model but do note the lower you quantize the lower the quality of images you get.

Update: I currently tried to quantize aura flow 2 but I didn't have enough RAM to save the output. but it did successfully qaunt it.

1

pkg updated && pkg upgrade -y && termux-setup-storage && pkg install wget -y && pkg install git -y && pkg install proot -y && cd ~ && git clone https://github.com/MFDGaming/ubuntu-in-termux.git && cd ubuntu-in-termux && chmod +x ubuntu.sh && ./ubuntu.sh -y && ./startubuntu.sh

2

apt update && apt upgrade -y && apt-get install curl git gcc make build-essential python3 python3-dev python3-distutils python3-pip python3-venv python-is-python3 -y && pip install ffmpeg --break-system-packages && apt dist-upgrade -y && apt install wget && apt-get install libgl1 libglib2.0-0 libsm6 libxrender1 libxext6 -y && apt-get install google-perftools && apt install libgoogle-perftools-dev && pip install moviepy==1.0.3 --break-system-packages && pip install cmake --break-system-packages && apt install build-essential libvulkan-dev vulkan-tools mesa-vulkan-drivers -y

install required packages for vulkan it will take an hour depending upon your phone

git clone https://github.com/google/shaderc.git cd shaderc python3 utils/git-sync-deps cmake -S . -B build cmake --build build cmake --install build

after you install the vulkan libs make sure you cd out of the folder before continuing to step 3

3

git clone --recursive https://github.com/leejet/stable-diffusion.cpp

4

cd stable-diffusion.cpp

5

git pull origin master

6

git submodule init

7

git submodule update

8

mkdir build

9

cd build

10

cmake ..

11

cmake --build . --config Release

12 if this Command doesn't work go to the original respiratory and copy it from there

cmake .. -DSD_VULKAN=ON cmake --build . --config Release

TO RUN

i used marco file manager to create the models folder in the build folder.

cd ubuntu-in-termux && ./startubuntu.sh

cd stable-diffusion.cpp && cd build

./bin/sd -m /root/stable-diffusion.cpp/build/models/portray_v10.safetensors -p "a lovely cat"

HERE IS ALL THE COMMAND ARGS YOU NEED TO RUN THE MODELS AND EVEN LORAS

usage: ./bin/sd [arguments]

arguments: -h, --help show this help message and exit -M, --mode [MODEL] run mode (txt2img or img2img or convert, default: txt2img) -t, --threads N number of threads to use during computation (default: -1). If threads <= 0, then threads will be set to the number of CPU physical cores -m, --model [MODEL] path to model --vae [VAE] path to vae --taesd [TAESD_PATH] path to taesd. Using Tiny AutoEncoder for fast decoding (low quality) --control-net [CONTROL_PATH] path to control net model --embd-dir [EMBEDDING_PATH] path to embeddings. --stacked-id-embd-dir [DIR] path to PHOTOMAKER stacked id embeddings. --input-id-images-dir [DIR] path to PHOTOMAKER input id images dir. --normalize-input normalize PHOTOMAKER input id images --upscale-model [ESRGAN_PATH] path to esrgan model. Upscale images after generate, just RealESRGAN_x4plus_anime_6B supported by now. --upscale-repeats Run the ESRGAN upscaler this many times (default 1) --type [TYPE] weight type (f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_k, q3_k, q4_k) If not specified, the default is the type of the weight file. --lora-model-dir [DIR] lora model directory -i, --init-img [IMAGE] path to the input image, required by img2img --control-image [IMAGE] path to image condition, control net -o, --output OUTPUT path to write result image to (default: ./output.png) -p, --prompt [PROMPT] the prompt to render -n, --negative-prompt PROMPT the negative prompt (default: "") --cfg-scale SCALE unconditional guidance scale: (default: 7.0) --strength STRENGTH strength for noising/unnoising (default: 0.75) --style-ratio STYLE-RATIO strength for keeping input identity (default: 20%) --control-strength STRENGTH strength to apply Control Net (default: 0.9) 1.0 corresponds to full destruction of information in init image -H, --height H image height, in pixel space (default: 512) -W, --width W image width, in pixel space (default: 512) --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, lcm} sampling method (default: "euler_a") --steps STEPS number of sample steps (default: 20) --rng {std_default, cuda} RNG (default: cuda) -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0) -b, --batch-count COUNT number of images to generate. --schedule {discrete, karras, ays} Denoiser sigma schedule (default: discrete) --clip-skip N ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer (default: -1) <= 0 represents unspecified, will be 1 for SD1.x, 2 for SD2.x --vae-tiling process vae in tiles to reduce memory usage --control-net-cpu keep controlnet in cpu (for low vram) --canny apply canny preprocessor (edge detection) --color Colors the logging tags according to level -v, --verbose print extra info

WANT TO SEE YOUR IMAGE AFTER IT GENERATES INSTALL THIS.PUT THE COMMAND AT THE END OF YOUR ARGS

pip install termvisage

COMMAND>

&& termvisage /root/stable-diffusion.cpp/build/output.png

About

I've Made An Easy to Follow install Guide For Sd.ccp its uses way less ram than fastsdcpu and u can use any model and lora or vae it supports sd14,sd15,sdxl,and sd3

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published