[News]🎇CoTAM is accepted to the Findings of ACL2024!🎇
CoTAM (arxiv.org/abs/2307.07099) is an LLM-based framework that generates efficient training data for smaller language models.
(Currently only SST-2 example is available, we will upload a unified version later)
Generate (You have to put your OpenAI API key in constant.py)
python cotam.py
Fine-tuning
python tune.py
Nearest Centroid (NC)
python nc.py
K-Nearest Neighbors (KNN)
python knn.py
Fine-tuning Results
Method | SST-2 | TweetEmo | AG-NEWS | MNLI(m) | MNLI(mm) | MRPC | CSQA |
---|---|---|---|---|---|---|---|
K-Shot (Human) | 60.54 | 44.38 | 81.05 | 35.88 | 38.75 | 51.96 | 34.54 |
NK-Shot (Human) | 62.17 | 69.51 | 88.66 | 43.33 | 44.03 | 57.50 | 47.36 |
NK-Shot (LLM) | 61.14 | 69.11 | 85.64 | 41.71 | 42.92 | 55.88 | 45.12 |
K-FlipDA++ | 74.28 | 70.87 | 84.72 | 51.52 | 53.56 | 60.15 | 50.52 |
K-CoTDA | 70.83 | 67.76 | 85.19 | 36.06 | 36.28 | 55.54 | 48.79 |
K-CoTAM | 79.12 | 72.76 | 85.80 | 54.07 | 56.16 | 61.64 | 53.22 |
Instance-based Text Classification Results
Method | SST-2 (NC) | SST-2 (KNN) | TweetEmo (NC) | TweetEmo (KNN) | AG-NEWS (NC) | AG-NEWS (KNN) |
---|---|---|---|---|---|---|
K-Shot (Human) | 82.00 | 78.20 | 66.01 | 59.92 | 77.72 | 73.57 |
NK-Shot (Human) | 87.55 | 83.45 | 71.23 | 67.56 | 84.70 | 82.33 |
NK-Shot (LLM) | 86.78 | 80.26 | 69.34 | 64.90 | 81.19 | 79.34 |
K-FlipDA++ | 88.13 | 86.76 | 66.53 | 65.05 | 79.82 | 75.11 |
K-CoTDA | 86.38 | 83.00 | 68.63 | 61.58 | 78.87 | 76.56 |
K-CoTAM | 88.43 | 87.52 | 70.02 | 65.37 | 80.60 | 75.48 |
@article{peng2023cotam,
title={Generating Efficient Training Data via LLM-based Attribute Manipulation},
author={Peng, Letian and Zhang, Yuwei and Shang, Jingbo},
journal={arXiv preprint arXiv:2307.07099},
year={2023}
}