Skip to content

Commit

Permalink
[Feature] OpenAI-Compatible Tools API + Streaming for Hermes & Mistra…
Browse files Browse the repository at this point in the history
…l models (vllm-project#5649)

Co-authored-by: constellate <constellate@1-ai-appserver-staging.codereach.com>
Co-authored-by: Kyle Mistele <kyle@constellate.ai>
  • Loading branch information
3 people authored Sep 4, 2024
1 parent 7a9946e commit 15d9e30
Show file tree
Hide file tree
Showing 26 changed files with 2,588 additions and 83 deletions.
10 changes: 10 additions & 0 deletions .buildkite/test-pipeline.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ steps:
- pytest -v -s entrypoints/openai
- pytest -v -s entrypoints/test_chat_utils.py


- label: Distributed Tests (4 GPUs) # 10min
working_dir: "/vllm-workspace/tests"
num_gpus: 4
Expand Down Expand Up @@ -271,6 +272,15 @@ steps:
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
- bash ./run-tests.sh -c configs/models-small.txt -t 1

- label: OpenAI-Compatible Tool Use # 20 min
fast_check: false
mirror_hardwares: [ amd ]
source_file_dependencies:
- vllm/
- tests/tool_use
commands:
- pytest -v -s tool_use

##### 1 GPU test #####
##### multi gpus test #####

Expand Down
58 changes: 54 additions & 4 deletions docs/source/serving/openai_compatible_server.md
Original file line number Diff line number Diff line change
Expand Up @@ -110,6 +110,14 @@ directory [here](https://github.com/vllm-project/vllm/tree/main/examples/)
:func: create_parser_for_docs
:prog: vllm serve
```
## Tool Calling in the Chat Completion API
### Named Function Calling
vLLM supports only named function calling in the chat completion API by default. It does so using Outlines, so this is
enabled by default, and will work with any supported model. You are guaranteed a validly-parsable function call - not a
high-quality one.

To use a named function, you need to define the functions in the `tools` parameter of the chat completion request, and
specify the `name` of one of the tools in the `tool_choice` parameter of the chat completion request.

### Config file

Expand Down Expand Up @@ -140,10 +148,52 @@ The order of priorities is `command line > config file values > defaults`.
## Tool calling in the chat completion API
vLLM supports only named function calling in the chat completion API. The `tool_choice` options `auto` and `required` are **not yet supported** but on the roadmap.

To use a named function you need to define the function in the `tools` parameter and call it in the `tool_choice` parameter.

It is the callers responsibility to prompt the model with the tool information, vLLM will not automatically manipulate the prompt. **This may change in the future.**
It is the callers responsibility to prompt the model with the tool information, vLLM will not automatically manipulate the prompt.

vLLM will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the `tools` parameter.

Please refer to the OpenAI API reference documentation for more information.

### Automatic Function Calling
To enable this feature, you should set the following flags:
* `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it
deems appropriate.
* `--tool-call-parser` -- select the tool parser to use - currently either `hermes` or `mistral`. Additional tool parsers
will continue to be added in the future.
* `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages
that contain previously generated tool calls. Hermes and Mistral models have tool-compatible chat templates in their
`tokenizer_config.json` files, but you can specify a custom template. This argument can be set to `tool_use` if your model has a tool use-specific chat
template configured in the `tokenizer_config.json`. In this case, it will be used per the `transformers` specification. More on this [here](https://huggingface.co/docs/transformers/en/chat_templating#why-do-some-models-have-multiple-templates)
from HuggingFace; and you can find an example of this in a `tokenizer_config.json` [here](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B/blob/main/tokenizer_config.json)

If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template!

#### Hermes Models
All Nous Research Hermes-series models newer than Hermes 2 Pro should be supported.
* `NousResearch/Hermes-2-Pro-*`
* `NousResearch/Hermes-2-Theta-*`
* `NousResearch/Hermes-3-*`


_Note that the Hermes 2 **Theta** models are known to have degraded tool call quality & capabilities due to the merge
step in their creation_.

Flags: `--tool-call-parser hermes`

#### Mistral Models
Supported models:
* `mistralai/Mistral-7B-Instruct-v0.3` (confirmed)
* Additional mistral function-calling models are compatible as well.

Known issues:
1. Mistral 7B struggles to generate parallel tool calls correctly.
2. Mistral's `tokenizer_config.json` chat template requires tool call IDs that are exactly 9 digits, which is
much shorter than what vLLM generates. Since an exception is thrown when this condition
is not met, the following additional chat templates are provided:

* `examples/tool_chat_template_mistral.jinja` - this is the "official" Mistral chat template, but tweaked so that
it works with vLLM's tool call IDs (provided `tool_call_id` fields are truncated to the last 9 digits)
* `examples/tool_chat_template_mistral_parallel.jinja` - this is a "better" version that adds a tool-use system prompt
when tools are provided, that results in much better reliability when working with parallel tool calling.


Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja`
162 changes: 162 additions & 0 deletions examples/openai_chat_completion_client_with_tools.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
"""
Set up this example by starting a vLLM OpenAI-compatible server with tool call
options enabled. For example:
IMPORTANT: for mistral, you must use one of the provided mistral tool call
templates, or your own - the model default doesn't work for tool calls with vLLM
See the vLLM docs on OpenAI server & tool calling for more details.
vllm serve --model mistralai/Mistral-7B-Instruct-v0.3 \
--chat-template examples/tool_chat_template_mistral.jinja \
--enable-auto-tool-choice --tool-call-parser mistral
OR
vllm serve --model NousResearch/Hermes-2-Pro-Llama-3-8B \
--chat-template examples/tool_chat_template_hermes.jinja \
--enable-auto-tool-choice --tool-call-parser hermes
"""
import json

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]

messages = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]

chat_completion = client.chat.completions.create(messages=messages,
model=model,
tools=tools)

print("Chat completion results:")
print(chat_completion)
print("\n\n")

tool_calls_stream = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=True)

chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
if chunk.choices[0].delta.tool_calls:
print(chunk.choices[0].delta.tool_calls[0])
else:
print(chunk.choices[0].delta)

arguments = []
tool_call_idx = -1
for chunk in chunks:

if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]

if tool_call.index != tool_call_idx:
if tool_call_idx >= 0:
print(
f"streamed tool call arguments: {arguments[tool_call_idx]}"
)
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
if tool_call.id:
print(f"streamed tool call id: {tool_call.id} ")

if tool_call.function:
if tool_call.function.name:
print(f"streamed tool call name: {tool_call.function.name}")

if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments

if len(arguments):
print(f"streamed tool call arguments: {arguments[-1]}")

print("\n\n")

messages.append({
"role": "assistant",
"tool_calls": chat_completion.choices[0].message.tool_calls
})


# Now, simulate a tool call
def get_current_weather(city: str, state: str, unit: 'str'):
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's.")


available_tools = {"get_current_weather": get_current_weather}

completion_tool_calls = chat_completion.choices[0].message.tool_calls
for call in completion_tool_calls:
tool_to_call = available_tools[call.function.name]
args = json.loads(call.function.arguments)
result = tool_to_call(**args)
print(result)
messages.append({
"role": "tool",
"content": result,
"tool_call_id": call.id,
"name": call.function.name
})

chat_completion_2 = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=False)
print("\n\n")
print(chat_completion_2)
129 changes: 129 additions & 0 deletions examples/tool_chat_template_hermes.jinja
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
{%- macro json_to_python_type(json_spec) %}
{%- set basic_type_map = {
"string": "str",
"number": "float",
"integer": "int",
"boolean": "bool"
} %}

{%- if basic_type_map[json_spec.type] is defined %}
{{- basic_type_map[json_spec.type] }}
{%- elif json_spec.type == "array" %}
{{- "list[" + json_to_python_type(json_spec|items) + "]" }}
{%- elif json_spec.type == "object" %}
{%- if json_spec.additionalProperties is defined %}
{{- "dict[str, " + json_to_python_type(json_spec.additionalProperties) + ']' }}
{%- else %}
{{- "dict" }}
{%- endif %}
{%- elif json_spec.type is iterable %}
{{- "Union[" }}
{%- for t in json_spec.type %}
{{- json_to_python_type({"type": t}) }}
{%- if not loop.last %}
{{- "," }}
{%- endif %}
{%- endfor %}
{{- "]" }}
{%- else %}
{{- "Any" }}
{%- endif %}
{%- endmacro %}


{{- bos_token }}
{{- "<|im_start|>system\nYou are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> " }}
{%- if tools is iterable and tools | length > 0 %}
{%- for tool in tools %}
{%- if tool.function is defined %}
{%- set tool = tool.function %}
{%- endif %}
{{- '{"type": "function", "function": ' }}
{{- '{"name": "' + tool.name + '", ' }}
{{- '"description": "' + tool.name + '(' }}
{%- for param_name, param_fields in tool.parameters.properties|items %}
{{- param_name + ": " + json_to_python_type(param_fields) }}
{%- if not loop.last %}
{{- ", " }}
{%- endif %}
{%- endfor %}
{{- ")" }}
{%- if tool.return is defined %}
{{- " -> " + json_to_python_type(tool.return) }}
{%- endif %}
{{- " - " + tool.description + "\n\n" }}
{%- for param_name, param_fields in tool.parameters.properties|items %}
{%- if loop.first %}
{{- " Args:\n" }}
{%- endif %}
{{- " " + param_name + "(" + json_to_python_type(param_fields) + "): " + param_fields.description|trim }}
{%- endfor %}
{%- if tool.return is defined and tool.return.description is defined %}
{{- "\n Returns:\n " + tool.return.description }}
{%- endif %}
{{- '"' }}
{{- ', "parameters": ' }}
{%- if tool.parameters.properties | length == 0 %}
{{- "{}" }}
{%- else %}
{{- tool.parameters|tojson }}
{%- endif %}
{{- "}" }}
{%- if not loop.last %}
{{- "\n" }}
{%- endif %}
{%- endfor %}
{%- endif %}
{{- " </tools>" }}
{{- 'Use the following pydantic model json schema for each tool call you will make: {"properties": {"name": {"title": "Name", "type": "string"}, "arguments": {"title": "Arguments", "type": "object"}}, "required": ["name", "arguments"], "title": "FunctionCall", "type": "object"}}
' }}
{{- "For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
" }}
{{- "<tool_call>
" }}
{{- '{"name": <function-name>, "arguments": <args-dict>}
' }}
{{- '</tool_call><|im_end|>' }}
{%- for message in messages %}
{%- if message.role == "user" or message.role == "system" or (message.role == "assistant" and message.tool_calls is not defined) %}
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
{%- elif message.role == "assistant" and message.tool_calls is defined %}
{{- '<|im_start|>' + message.role }}
{%- for tool_call in message.tool_calls %}
{{- '\n<tool_call>\n' }}
{%- if tool_call.function is defined %}
{%- set tool_call = tool_call.function %}
{%- endif %}
{{- '{' }}
{{- '"name": "' }}
{{- tool_call.name }}
{{- '"}' }}
{{- ', ' }}
{%- if tool_call.arguments is defined %}
{{- '"arguments": ' }}
{{- tool_call.arguments|tojson }}
{%- endif %}
{{- '\n</tool_call>' }}
{%- endfor %}
{{- '<|im_end|>\n' }}
{%- elif message.role == "tool" %}
{%- if loop.previtem and loop.previtem.role != "tool" %}
{{- '<|im_start|>tool\n' }}
{%- endif %}
{{- '<tool_response>\n' }}
{{- message.content }}
{%- if not loop.last %}
{{- '\n</tool_response>\n' }}
{%- else %}
{{- '\n</tool_response>' }}
{%- endif %}
{%- if not loop.last and loop.nextitem.role != "tool" %}
{{- '<|im_end|>' }}
{%- elif loop.last %}
{{- '<|im_end|>' }}
{%- endif %}
{%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
{{- '<|im_start|>assistant\n' }}
{%- endif %}
Loading

0 comments on commit 15d9e30

Please sign in to comment.