Skip to content

Kurorororo/numeric-fast-downward

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Numeric Fast Downward

This is a work-in-progress repository for an extension of Numerical Fast Downward and developed by Chiara Piacentini and Ryo Kuroiwa.

Numeric Fast Downward (NFD), an extension of Fast Downward, has been originally developed by Johannes Aldinger and Bernhard Nebel.

@inproceedings{aldinger2017interval,
  title={Interval based relaxation heuristics for numeric planning with action costs},
  author={Aldinger, Johannes and Nebel, Bernhard},
  booktitle={Joint German/Austrian Conference on Artificial Intelligence (K{\"u}nstliche Intelligenz)},
  pages={15--28},
  year={2017},
  organization={Springer}
}

Here is a list of the current additions:

  • numeric bound
@inproceedings{kuroiwa2023bound,
  title={Extracting and Exploiting Bounds of Numeric Variables for Optimal Linear Numeric Planning.},
  author={Kuroiwa, Ryo and Shleyfman, Alexander and Beck, J Christopher},
  booktitle={Proc. ECAI},
  year={2023}
}
  • symmetry breaking
@inproceedings{shleyfman2023symmetry,
  title={Symmetry Detection and Breaking in Cost-Optimal Numeric Planning.},
  author={Shleyfman, Alexander and Kuroiwa, Ryo and Beck, J Christopher},
  booktitle={Proc. ICAPS},
  pages={393--401},
  year={2023}
}
  • linear numeric LM-cut heuristic
@inproceedings{kuroiwa2022linearlmcut,
  title={LM-Cut Heuristics for Optimal Linear Numeric Planning.},
  author={Kuroiwa, Ryo and Shleyfman, Alexander and Beck, J Christopher},
  booktitle={Proc. ICAPS},
  pages={203--212},
  year={2022}
}
  • numeric LM-cut heuristic
@article{kuroiwa2022lmcut,
  title={The LM-Cut Heuristic Family for Optimal Numeric Planning with Simple Conditions},
  author={Kuroiwa, Ryo and Shleyfman, Alexander and Piacentini, Chiara and Castro, Margarita P and Beck, J Christopher},
  journal={JAIR},
  volume={75},
  pages={1477--1548},
  year={2022}
}
  • numeric delete-relaxation IP/LP heuristics
@inproceedings{piacentini2018linear,
  title={Linear and Integer Programming-Based Heuristics for Cost-Optimal Numeric Planning.},
  author={Piacentini, Chiara and Castro, Margarita P and Cir{\'e}, Andr{\'e} Augusto and Beck, J Christopher},
  booktitle={Proc. AAAI},
  pages={6254--6261}
  year={2018}
}
  • compilation of planning problems into MIP models
@inproceedings{piacentini2018compiling,
  title={Compiling Optimal Numeric Planning to Mixed Integer Linear Programming.},
  author={Piacentini, Chiara and Castro, Margarita P and Cir{\'e}, Andr{\'e} Augusto and Beck, J Christopher},
  booktitle={Proc. ICAPS},
  pages={383--387},
  year={2018}
}
  • resource transformation of classical planning problems
@inproceedings{wilhelm2018stubborn,
  title={On Stubborn Sets and Planning with Resources.},
  author={wilhelm, anna and steinmetz, marcel and hoffmann, j{\"o}rg},
  booktitle={Proc. ICAPS},
  pages={288--297},
  year={2018}
}
  • landmark based heuristic
@inproceedings{scala2017landmarks,
  title={Landmarks for Numeric Planning Problems.},
  author={Scala, Enrico and Haslum, Patrik and Magazzeni, Daniele and Thi{\'e}baux, Sylvie},
  booktitle={Proc. IJCAI},
  pages={4384--4390},
  year={2017}
}
  • subgoaling-based heuristics
@article{scala2020heuristics,
  title={Subgoaling Techniques for Satisficing and Optimal Numeric Planning},
  author={Scala, Enrico and Haslum, Patrik and Thi{\'e}baux, Sylvie and Ramirez, Miquel},
  year={2020},
  journal={JAIR},
  volume={68},
  pages={691--752}
}

Build

Install LPSolver

CPLEX

Install CPLEX. IBM provides a free academic lincense: https://www.ibm.com/academic/home

Suppose that CPLEX is installed in /opt/ibm/ILOG/CPLEX_Studio1210. Then, export the following environment variables.

export DOWNWARD_CPLEX_ROOT=/opt/ibm/ILOG/CPLEX_Studio1210/cplex
export DOWNWARD_CONCERT_ROOT=/opt/ibm/ILOG/CPLEX_Studio1210/concert

OSI

Instal open solver interface.

export DOWNWARD_COIN_ROOT=/path/to/osi
sudo apt install zlib1g-dev
wget http://www.coin-or.org/download/source/Osi/Osi-0.107.9.tgz
cd Osi-0.107.9
./configure CC="gcc"  CFLAGS="-pthread -Wno-long-long" \
            CXX="g++" CXXFLAGS="-pthread -Wno-long-long" \
            LDFLAGS="-L$DOWNWARD_CPLEX_ROOT/lib/x86-64_linux/static_pic" \
            --without-lapack --enable-static=no \
            --prefix="$DOWNWARD_COIN_ROOT" \
            --disable-bzlib \
            --with-cplex-incdir=$DOWNWARD_CPLEX_ROOT/include/ilcplex \
            --with-cplex-lib="-lcplex -lm -ldl"

make
sudo make install
cd ..
rm -rf Osi-0.107.9
rm Osi-0.107.9.tgz

Gurobi (Optional)

If you want to use the IP compilation of numeric planning, please install Gurobi and export the following environment variables. Suppose that Gurobi is installed in /opt/gurobi911.

export DOWNWARD_GUROBI_ROOT=/opt/gurobi911/linux64

If you use G++ >= 5.2, change the softlink to the Gurobi C++ library.

ln -s /opt/gurobi911/linux64/lib/libgurobi_g++5.2.a /opt/gurobi911/linux64/lib/libgurobi_c++.a

Also, please uncomment the following lines in DownwardFiles.cmake.

# fast_downward_plugin(
#     NAME GUROBI_IP_COMPILATION
#     HELP "IP compilations (Gurobi)"
#     SOURCES 
#         gurobi_compilation/iterative_horizon.cc
#         gurobi_compilation/ip_compilation.cc
#         gurobi_compilation/ip_constraint_generator.cc
#         gurobi_compilation/sc_compilation.cc
#         gurobi_compilation/sas_compilation.cc
#         gurobi_compilation/numeric_constraints.cc
#         gurobi_compilation/action_precedence_graph.cc
#         gurobi_compilation/action_cycle_elimination_callback.cc
#         gurobi_compilation/sc_cut_compilation.cc
#         gurobi_compilation/sas_cut_compilation.cc
#         gurobi_compilation/numeric_constraints_with_cuts.cc
#         gurobi_compilation/relevance_constraints.cc
# )

Bliss

Bliss is a library to detect graph automorphism groups, which are used for symmetry breaking in planning.

cd src/search/bliss-0.73
make

Compile

cd numeric-fast-downward
./build.py release64

Run

Follow the instructions of the original Fast Downward. Please use Python 2.7.x. Currently, Python 3.x is not supported.

Quick summary:

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(blind)

Numeric LM-cut

h^{LM-cut}_{2b+} (Kuroiwa, Shleyfman, and Beck 2023)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(use_second_order_simple=true, bound_iterations=10, ceiling_less_than_one=true))"

h^{LM-cut}_{2b} (Kuroiwa, Shleyfman, and Beck 2023)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(use_second_order_simple=true, bound_iterations=10))"

h^{LM-cut}_2 (Kuroiwa, Shleyfman, and Beck 2022)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(use_second_order_simple=true))"

h^{LM-cut}_1 (Kuroiwa et al. 2022b) and h^{LM-cut} (h^{LM-cut}_{cri}) (Kuroiwa et al. 2022)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric)"

Other Variants (Kuroiwa et al. 2022)

  • \bar{h}^{LM-cut}_{cri}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(roudning_up=true))"
  • h^{LM-cut}_{cri,+}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(ceiling_less_than_one=true))"
  • h^{LM-cut}_{ir}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(irmax=true, disable_ma=true))"
  • h^{LM-cut}_{ir,m}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(irmax=true, disable_ma=false))"
  • h^{LM-cut}_{ir,m+}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(irmax=true, disable_ma=false, ceiling_less_than_one=true))"
  • h^{LM-cut}_{rnd}
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(random_pcf=true))"
  • Propositional LM-cut
python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(ignore_numeric=true))"

Operator-counting (OC) Heuristics

OC with the Numeric LM-cut and SEQ Constraints (h^{LM-cut,SEQ}_{LP}) (Kuroiwa et al. 2022)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([lmcutnumeric_constraints,state_equation_constraints,numeric_state_equation_constraints],cplex,lp))"

OC with the Numeric LM-cut Constraints (h^{LM-cut}_{LP}) (Kuroiwa et al. 2022)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([lmcutnumeric_constraints],cplex,lp))"

OC with the Delete-relaxation and SEQ Constraints using IP (h^C_{IP}) (Piacentini et al. 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([delete_relaxation_constraints([basic,landmarks,temporal,inverse,relevance]),state_equation_constraints,numeric_state_equation_constraints],cplex,ip))"

OC with the Delete-relaxation and SEQ Constraints using LP (h^C_{LP}) (Piacentini et al. 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([delete_relaxation_constraints([basic,landmarks,temporal,inverse,relevance]),state_equation_constraints,numeric_state_equation_constraints],cplex,lp))"

OC with the SEQ Constraints (h^{SEQ}_{LP}) (Piacentini et al. 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([state_equation_constraints,numeric_state_equation_constraints],cplex,lp))"

Symmetry Breaking (Shleyfman, Kuroiwa, and Beck 2023)

DKS

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "dks_astar(blind, symmetry=symmetry_state_pruning(symmetries=goal_only))"

OSS

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "orbit_astar(blind, symmetry=symmetry_state_pruning(symmetries=goal_only))"

Interval Relaxatoin Based hmax (h^{irmax}) (Aldinger and Nebel 2017)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(irhmax())"

Subgoaling-based hmax (\hat{h}^{rmax}_{hbd+}) (Scala et al. 2020)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(hrmax(restrict_achievers=true))"

Numeric Landmark Heuristic (h^{lm+}_{hbd}) (Scala et al. 2017)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(operatorcounting([lm_numeric],cplex,lp))"

Generalized Subgoaling Heuristic (h^{gen}_{hbd}) (Scala et al. 2020)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(hgen(cplex,lp))"

Resource Transformation of Classical Planning (Wilhelm, Steinmetz, and Hoffmann 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "astar(lmcutnumeric(transform=resource))"

IP Compilation

Branch-and-Cut for SCT (Kuroiwa and Beck 2021)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "gurobi_ip_compilation(gurobi_ipmodel=[sc_cut(landmark=true),numeric_cut(precondition_relaxation=true),relevance], lazy_constraints=true, user_cuts=true, eval=operatorcounting([delete_relaxation_constraints([basic,landmarks,temporal,relevance,inverse]),state_equation_constraints,numeric_state_equation_constraints],cplex,ip))"

Branch-and-Cut for LT (Kuroiwa and Beck 2021)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "gurobi_ip_compilation(gurobi_ipmodel=[sc_cut,numeric_cut(precondition_relaxation=true,sequence_linear_effects=true),relevance], lazy_constraints=true, user_cuts=true, linear_effects=true, eval=operatorcounting([delete_relaxation_constraints([basic,temporal,inverse,ignore_numeric]),state_equation_constraints],cplex,ip))"

IP Compilation for SCT (Piacentini et al. 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "gurobi_ip_compilation(gurobi_ipmodel=[sc(landmark=true),numeric,relevance], eval=operatorcounting([delete_relaxation_constraints([basic,landmarks,temporal,relevance,inverse]),state_equation_constraints,numeric_state_equation_constraints],cplex,ip))"

IP Compilation for LT (Piacentini et al. 2018)

python fast-downward.py --build=release64 domain.pddl problem.pddl --search "gurobi_ip_compilation(gurobi_ipmodel=[sc,numeric,relevance], linear_effects=true, eval=operatorcounting([delete_relaxation_constraints([basic,temporal,inverse,ignore_numeric]),state_equation_constraints],cplex,ip))"

ORIGINAL README (Fast Downward)

Fast Downward is a domain-independent planning system.

The following directories are not part of Fast Downward as covered by this license: ./src/search/ext

For the rest, the following license applies:

Copyright (C) 2003-2016 Malte Helmert Copyright (C) 2008-2016 Gabriele Roeger Copyright (C) 2012-2016 Florian Pommerening Copyright (C) 2010-2015 Jendrik Seipp Copyright (C) 2010, 2011, 2013-2015 Silvan Sievers Copyright (C) 2013, 2015 Salome Simon Copyright (C) 2014, 2015 Patrick von Reth Copyright (C) 2015 Manuel Heusner, Thomas Keller Copyright (C) 2009-2014 Erez Karpas Copyright (C) 2014 Robert P. Goldman Copyright (C) 2010-2012 Andrew Coles Copyright (C) 2010, 2012 Patrik Haslum Copyright (C) 2003-2011 Silvia Richter Copyright (C) 2009-2011 Emil Keyder Copyright (C) 2010, 2011 Moritz Gronbach, Manuela Ortlieb Copyright (C) 2011 Vidal Alcázar Saiz, Michael Katz, Raz Nissim Copyright (C) 2010 Moritz Goebelbecker Copyright (C) 2007-2009 Matthias Westphal Copyright (C) 2009 Christian Muise

Fast Downward is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Fast Downward is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

For contact information see http://www.fast-downward.org/.