Skip to content

Commit

Permalink
Adding existing code from old repo
Browse files Browse the repository at this point in the history
  • Loading branch information
rachel3834 committed Oct 27, 2022
0 parents commit 4e20c16
Show file tree
Hide file tree
Showing 59 changed files with 8,417 additions and 0 deletions.
203 changes: 203 additions & 0 deletions CadenceOverVisibilityWindowMetric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import lsst.sims.maf.db as db
import lsst.sims.maf.metrics as metrics
import lsst.sims.maf.slicers as slicers
import lsst.sims.maf.metricBundles as metricBundles
from lsst.sims.maf.metrics import BaseMetric
import calc_expected_visits
import numpy as np
import matplotlib.pyplot as plt
from astropy.visualization import astropy_mpl_style
plt.style.use(astropy_mpl_style)
import astropy.units as u
from astropy.time import Time, TimeDelta
from sys import argv

class CadenceOverVisibilityWindowMetric(BaseMetric):
"""Metric to compare the lightcurve cadence produced by LSST over the visibility window
for a given position in the sky to the desired cadence"""

def __init__(self, cols=['fieldRA','fieldDec','filter'],
metricName='CadenceOverVisibilityWindowMetric',
**kwargs):
"""Kwargs must contain:
filters list Filterset over which to compute the metric
cadence list Cadence desired for each filter in units of decimal hours
start_date string Start of observing window YYYY-MM-DD
end_date string End of observing window YYYY-MM-DD
"""

self.ra_col = 'fieldRA'
self.dec_col = 'fieldDec'
self.exp_col = 'visitExposureTime'
self.n_exp_col = 'numExposures'
self.filterCol = 'filter'
self.obstime_col = 'observationStartMJD'
self.visittime_col = 'visitTime'
self.metricName = 'CadenceOverVisibilityWindowMetric'

for key in ['filters', 'cadence', 'start_date', 'end_date']:

if key in kwargs.keys():
setattr(self, key, kwargs[key])
print('Set '+key+' = '+str(kwargs[key]))

else:
raise ValueError('ERROR: Missing data for '+key)
exit()

if len(self.filters) != len(self.cadence):
raise ValueError('ERROR: The list of filters requested must correspond to the list of required cadences')
exit()

cols = [ self.ra_col, self.dec_col,
self.exp_col, self.n_exp_col,
self.obstime_col, self.visittime_col, self.filterCol ]

super(CadenceOverVisibilityWindowMetric,self).__init__(col=cols, metricName=metricName)

def run(self, dataSlice, slicePoint=None):

t = np.empty(dataSlice.size, dtype=list(zip(['time','filter'],[float,'|S1'])))
t['time'] = dataSlice[self.obstime_col]

t_start = Time(self.start_date+' 00:00:00')
t_end = Time(self.end_date+' 00:00:00')
n_days = int((t_end - t_start).value)
dates = np.array([t_start + \
TimeDelta(i,format='jd',scale=None) for i in range(0,n_days,1)])

result = 0.0

for i,f in enumerate(self.filters):

print('Calculating the expected visits in filter '+f+\
' given required cadence '+str(self.cadence[i]))

# Returns a list of the number of visits per night for each pointing
pointing = [(dataSlice[self.ra_col][0],dataSlice[self.dec_col][0])]
(n_visits_desired, hrs_visibility) = calc_expected_visits.calc_expected_visits(pointing,
self.cadence[i],
self.start_date,self.end_date)

n_visits_actual = []

for j,d in enumerate(dates):

idx = np.where(dataSlice[self.filterCol] == f)

actual_visits_per_filter = dataSlice[idx]


tdx = np.where(actual_visits_per_filter[self.obstime_col].astype(int) == int(d.jd-2400000.5))

n_visits_actual.append( float(len(actual_visits_per_filter[tdx])) )

# Case 1: Required cadence is less than 1 day, meaning we
# anticipate more than 1 observation per night
if self.cadence[i] <= 24.0:
for j,d in enumerate(dates):

if n_visits_desired[0][j] > 0:

night_efficiency = n_visits_actual[j] / float(n_visits_desired[0][j])

result += night_efficiency

result = result / float(len(dates))

# Case 2: Required cadence is greater than 1 day, meaning we
# expect at least 1 observation within batches of nights
# self.cadence[i] long
else:
n_nights = int(self.cadence[i]/24.0)

for j in range(0,len(dates),n_nights):

hrs_available = (np.array(hrs_visibility[0][j:j+n_nights])).sum()

n_actual = (np.array(n_visits_actual[j:j+n_nights])).sum()

if hrs_available >= 1.0 and n_actual > 1:

result += 1.0

result = result / float(len(dates)/n_nights)

result = (result / float( len(self.filters) ))*100.0

print('METRIC RESULT: Observing cadence percentage = '+str(result) )

return result


def compute_metric(params):
"""Function to execute the metric calculation when code is called from
the commandline"""

obsdb = db.OpsimDatabase('../../tutorials/baseline2018a.db')
outputDir = '/home/docmaf/'
resultsDb = db.ResultsDb(outDir=outputDir)

(propids, proptags) = obsdb.fetchPropInfo()
surveyWhere = obsdb.createSQLWhere(params['survey'],proptags)

obs_params = {'filters': params['filters'],
'cadence': params['cadence'],
'start_date': params['start_date'],
'end_date': params['end_date']}

metric = CadenceOverVisibilityWindowMetric(**obs_params)
slicer = slicers.HealpixSlicer(nside=64)
sqlconstraint = surveyWhere
bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint)

bgroup = metricBundles.MetricBundleGroup({0:bundle}, obsdb, outDir='newmetric_test',resultsDb=resultsDb)
bgroup.runAll()


if __name__ == '__main__':

if len(argv) == 1:
print('Metric requires the following commandline sequence, e.g.:')
print('> python CadenceOverVisibilityWindowMetric.py filters=g,r,i,z cadence=168.0,168.0,1.0,168.0 start_date=2020-01-02 end_date=2020-04-02 survey=option')
print(' where:')
print(' filters may be specified as a comma-separated list without spaces')
print(' cadence is the cadence corresponding to each filter in hours, in a comma-separated list without spaces')
print(' start_date, end_date are the UTC dates of the start and end of the observing window')
print(' survey indicates which survey to select data from. Options are {WFD, DD, NES}')

else:
params = {}

for arg in argv:

try:
(key, value) = arg.split('=')

if key == 'filters':

params[key] = value.split(',')


if key == 'cadence':

cadence_list = []

for val in value.split(','):

cadence_list.append(float(val))

params[key] = cadence_list

if key in [ 'start_date', 'end_date', 'survey' ]:

params[key] = value

except ValueError:
pass

compute_metric(params)

Loading

0 comments on commit 4e20c16

Please sign in to comment.