Skip to content

Lanping-Tech/tooth-lesion-recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tooth Lesion Recognition

Download the pre-trained model

两个阶段的预训练模型下载链接:https://pan.baidu.com/s/1wC2VZfTsd7K3d3BlxQZn4w 提取码:lnki

下载完成后,将预训练模型文件step_one.ptstep_two.pt放到models文件夹中即可。

Install & Deploy

pip install -r requirements.txt

Running

python manage.py runserver 0.0.0.0:8000

then,

http://127.0.0.1:8000/detect/?image-path=图片路径

即可得到识别结果。

接口说明

输入参数

参数名 格式 说明
image-path str 待检测图片路径

输出参数

参数名 格式 说明
status str 是否返回有效结果,取值"success | fail"
results json 检测结果数组,数组每个元素中包含'label'、'confidence'、'topleft'和'bottomright'4个字段的处理结果;当status为fail时,results为空。

results中的字段实例如下:

{
	"status": "success",  # 是否返回有效结果,取值"success \| fail"
	"results": [
        {
            "label": "caries_middle", # 检测结果的标签
		    "confidence": 0.6430898904800415, # 检测结果的置信度
		    "topleft": [1332, 1897], # 检测结果的左上角坐标
		    "bottomright": [1356, 1922] # 检测结果的右下角坐标
	    }, 
        {
            "label": "caries_middle",
            "confidence": 0.6489260196685791,
            "topleft": [1353, 1896],
            "bottomright": [1379, 1922]
        }, 

        ...

        {
            "label": "caries",
            "confidence": 0.7274314165115356,
            "topleft": [2101, 1804],
            "bottomright": [2137, 1833]
        }
    ]
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages