Skip to content

LaughBuddha/Learning-Resources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 

Repository files navigation

Learning-Resources

Collection of all learning material

  1. Norms: https://medium.com/@montjoile/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c

  2. Max. Likelihood Function: https://medium.com/quick-code/maximum-likelihood-estimation-for-regression-65f9c99f815d

  3. Posterior and Prior: https://medium.com/@SeoJaeDuk/archived-post-random-notes-for-prior-and-posterior-1116d34695f7

  4. MLE and MAP with example: https://towardsdatascience.com/a-gentle-introduction-to-maximum-likelihood-estimation-and-maximum-a-posteriori-estimation-d7c318f9d22d

  5. Kernels: https://towardsdatascience.com/kernel-function-6f1d2be6091

  6. Forward Propagation: https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250

  7. Softmax, Negative Likelihood, Derivative of Softmax: https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/

  8. Coding a basic 2 layer NN: https://towardsdatascience.com/coding-a-2-layer-neural-network-from-scratch-in-python-4dd022d19fd2

  9. Generative Adversarial Networks (GANs): https://medium.com/free-code-camp/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394

  10. Principal Component Analysis(PCA): https://medium.com/codex/principal-component-analysis-pca-how-it-works-mathematically-d5de4c7138e6

  11. Singular Value Decomposition: https://towardsdatascience.com/svd-8c2f72e264f

  12. Convolutional Neural Networks (CNNs) - CS231 - Stanford https://www.youtube.com/playlist?list=PLC1qU-LWwrF64f4QKQT-Vg5Wr4qEE1Zxk

  13. Gaussian mixture models https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e

  14. Variational Autoencoder

  1. Transformers (NLP) - https://medium.com/analytics-vidhya/how-do-transformers-work-in-nlp-a-guide-to-the-latest-state-of-the-art-models-52424082c132

  2. RNN/LSTM - http://colah.github.io/posts/2015-08-Understanding-LSTMs/

  3. Attention in NLP - https://medium.com/@joealato/attention-in-nlp-734c6fa9d983

  4. Support Vector Machines(SVM) - https://classroom.udacity.com/courses/ud262/lessons/386608826/concepts/3758388600923 (ML GeorgiaTech Udacity course -> Kernels & SVM)

  5. YouTube channels - Statistics, Data Science general concepts

  6. MLOps - https://madewithml.com/#foundations

  7. ML interviews - https://huyenchip.com/ml-interviews-book/

About

Collection of all learning material

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published