Some general Forth gripes:
- Most non-trivial Forth source code becomes unreadable to all but the author.
- Vocabularies, wordlists, and the search order are a clunky way to do namespaces.
- Avoiding namespace pollution encourages building longer words which are harder to debug.
- Excessive stack manipulation is common, and is just confusing and distracting.
- ANS-Forth local variables are an overly-complex solution.
- Forth control structures could be more flexible.
Some high-level gripes when using Forth inside other popular envrionments:
- Null-terminated strings produce cleaner code than counted strings.
- Null-terminated strings allow easier linking to external C libraries.
- A regular expression engine would make scripting tasks more pleasant.
- Networking and Multithreading functionality is important.
- Hooks to parse and generate XML or HTML would be nice for web stuff.
Enter Reforth!
It is small, familiar, still a Forth. Not an ANS-Forth out of the box, but:
- Where Reforth uses ANS words, they generally work the same way or can be easily redefined.
- Reforth is pretty normal under the hood, so adding a full ANS layer would be straight forward.
Version 1 is built with C to get going quickly and so it can run on my x86(-64) machines and my ARM devices. It uses GNU C's Labels as Values (like gforth does) to build a proper threaded Forth without relying on the C call stack.
It is on github.
Reforth tries to solve my gripes without fundamentally changing Forth's elegance and simplicity.
Now to the gripes! Many of these have been solved in other Forths and certainly none are new ideas. But, for whatever reason, I havn't found them all together in one place. So, here goes...
In Reforth, the word end replaces traditional Forth's then, loop, again, and repeat. This:
- reduces the core word count
- is shorter
- is simpler (every code block ends with end)
- is easier for non-Forth folk to pick up
- is only slightly more complex under the hood
- allows interlocking functionality between counted and conditional loops
Any number of while calls can be made in a single conditional loop:
begin
condition1
while
condition2
while
operation
end
The above allows conditional chaining like the && operator in C or bash.
The word until does not terminate a loop, but is just syntactic sugar for 0= while. Plus, the two can be mixed:
begin
condition1
while
condition2
until
operation
end
Counted loops use for end instead of do loop, and take a single argument rather than an index and limit:
10 for i . cr end
Having simpler counted loops allows the conditional loop words to also be used there:
10 for
condition1
while
operation
end
And conversely i can also be used in a conditional loop to get the index:
begin
i . cr
end
The words leave and next work like C's break and continue for fine-grained control, and may apply to either counted or conditional loops:
begin
condition
if operation
next
end
condition1
if operation1
leave
end
end
10 for
condition
if operation
leave
end
end
Finally, ANS-Forth's case of endof endcase have been dumped, because it is easy to build a switch:
begin
condition1
if operation1
leave
end
condition2
if operation1
leave
end
operation
leave
end
Words if, begin, and for are state-smart. When called in interpret mode they automatically enter compile mode. Later, end detects the fact, executes the compiled code fragment, and reverts to interpret mode. This is quite useful when using Forth as a shell or scripting language.
> 5 for "hello world\n" type end
hello world
hello world
hello world
hello world
hello world
ok (0)
Word definitions may be nested.
: hiphip ( -- )
: cheer "hip hip, hooray!" type ;
cheer cheer cheer
;
Ok, so one could do the above with a loop. But there is more to it:
- Sub-words are private and scoped so they are only visible in the current definition, avoiding namespace pollution. Above, one could not call cheer outside the definition of hiphip.
- Smaller definitions are a good thing for code clarity and maintenance. Go ahead and break up those long definitions into sub-words. Try using a sub-words instead of a nested code blocks.
- Private sub-words solve half the problem with vocabularies. More on this later.
Implementing sub-words is easy. Many Forths could probably do it:
- Make : (colon) an immediate word.
- Turn Forth's compile/interpret flag into a counter. Have : (colon) increment it and ; (semi-colon) decrement.
- Implement one of the following:
- Compile a jump branch around sub-words so they do not execute until called, or...
- Require sub-words be defined at the start of the outer word and adjust its entry point.
- Make ; (semicolon) patch the current wordlist appropriately to hide sub-words.
Example:
: dump ( address length -- )
: hex ( a -- )
at! 16
for c@+
FFh and "%02x " format type
end ;
: ascii ( a -- )
at! 16
for c@+
dup alpha? over digit? or 0=
if drop 46 end emit
end ;
16 / 1+
for
dup "\n%08x " format type
dup hex space dup ascii
16 +
end
drop ;
Result:
> 'dump sys:xt-body @ 100 dump
0062ef0a 72 00 18 00 14 00 6f 00 10 00 00 00 00 00 00 00 r.....o.........
0062ef1a 73 00 0f 00 19 00 6f 00 ff 00 00 00 00 00 00 00 s.....o.........
0062ef2a 28 00 70 00 04 00 25 30 32 78 20 00 98 00 74 00 ..p....02x....t.
0062ef3a 02 00 72 00 1b 00 14 00 6f 00 10 00 00 00 00 00 ..r.....o.......
0062ef4a 00 00 73 00 12 00 19 00 08 00 96 00 0a 00 95 00 ..s.............
0062ef5a 29 00 2f 00 71 00 07 00 09 00 6f 00 2e 00 00 00 ....q.....o.....
0062ef6a 00 00 00 00 40 00 74 00 02 00 6f 00 10 00 00 00 ......t...o..... ok
Supporting random numbers of local variables in Forth makes for complex handling of the return stack at run-time, or a complex compiler, or both.
Reforth supports precisely two local variables: at and my
- at is designed to hold an address and is set with at!. It is like the A register from Chuck's later work, except it does not have to be saved and restored when calling words that also use it for their own purposes. The words @+ and !+ use and increment it automatically. It also works well (and importantly, reads well) as a pointer for relative addressing.
- my is a general purpose bucket set with my!. It fills the same sort of role as >r, r@, and r>, but is faster, uses less code, and doesn't need to be cleaned up.
Example:
: accept ( buf lim -- len )
over at!
for
key my!
my while
my 10 = until
my c!+
end
0 c!+ at 1- swap - ;
Since the number of locals is fixed the implementation is able to be very efficient. Entering and exiting a high-level word simply adjusts the return stack pointer by three cells instead of one.
Being limited to two locals per word combines elegantly with sub-words. Want more locals? Use more words!
It has been common for decades for Forth programmers to implement records. Something like:
: struct 0 ;
: field create over , + does @ + ;
struct
cell field alpha
cell field beta
100 field gamma
constant stuff
Basic relative addressing using names which improves code readbility. The create/does overhead can be a bottleneck but fancier and faster implementations are in the wild. Forth200x has something similar.
Reforth implements records and fields in code for efficiency, and uses a nice clean syntax:
record stuff
cell field alpha
cell field beta
100 field gamma
end
Furthermore, record is an immediate word, so one can define private records inside words. This is useful for neatly managing memory allotted by create does defining words:
: fruit ( apples oranges -- )
record fields
cell field apples
cell field oranges
end
create
here tuck
fields allot
oranges !
apples !
does
( etc... ) ;
Sub-words lend themselves to implementing APIs and libraries just like traditional wordlists. In Reforth, the parser is modified to recognise a new syntax:
hiphip:cheer
The above tells the parser to:
- Look for the word hiphip in the dictionary
- Look for the sub-word cheer in hiphip's list
- Execute or compile cheer
This solves the second half of the problem with vocabularies. Saying hiphip:cheer is unambiguous, does not rely on a search order being set first, and does double duty by grouping related words with a common prefix without requiring that prefix to be used inside the library itself.
Being able to call sub-words using the outer:inner notation looks a lot like calling a static method in a class in other languages. How about proper objects and methods? We already have the tools: records, sub-words, and Forth's create/does.
: fruit-basket ( -- )
record fields
cell field apples
cell field oranges
cell field bananas
end
: count-fruit ( this -- n )
at!
at apples @
at oranges @ +
at bananas @ + ;
create fields allot does ;
fruit-basket hamper
5 hamper.apples !
3 hamper.oranges !
2 hamper.bananas !
hamper.count-fruit
Above, the outer:inner static notation has been tweaked to be object.method. It tells the parser to:
- Look for the word hamper in the dicitonary
- Look for the sub-word count-fruit in hamper's list
- Execute or compile hamper
- Execute or compile cheer
Step #2 works because Reforth's word does patches the defining word's sub-word list into created words' headers, ie, hamper inherits fruit-basket's sub-word list.
A more useful example:
: array ( -- )
record fields
cell field size
cell field data
end
: index ( i a -- )
dup at! size @ 1- min 0 max cells at data @ + ;
: get ( i a -- n )
index @ ;
: set ( n i a -- )
index ! ;
: dump ( a -- )
dup at! size @
at "array %x\n" print
for
i at get
i " %d => %d\n" print
end ;
: construct ( n -- a )
here fields allot
over cells allocate
over data !
tuck size ! ;
: destruct ( a -- )
dup data @ free free ;
create construct drop does
;
Usage:
> 3 array test
ok
> test.dump
array 62f452
0 => 0
1 => 0
2 => 0
ok
> 17 1 test.set
ok
> test.dump
array 62f452
0 => 0
1 => 17
2 => 0
ok
> 1 test.get .
17 ok
Reforth understands how to parse string literals directly, without words like s" or z". It follows the C-like escape sequences for \t, \r, \n, etc. A circular set of string buffers are used to allow up to three string literals in use simultaneously in interpret mode.
"hello world\n" type
Reforth has the word format which wraps C's sprintf() functionality. All the usual % sequences are supported. Like string literals, formatted strings use a circular set of buffers so that formatting operations may be chained in interpret mode.
42 "the number is: %d\n" format type
Reforth allows matching and splitting strings by regex:
: taste-test ( subject -- )
"(apple|orange|banana)" match
if "got fruit!\n" type end ;
: process-lines ( text -- )
: line ( text -- text' flag )
dup "\r?\n" split rot type ;
begin line while cr end drop ;