Skip to content

Commit

Permalink
Fixed grammatical errors in manual.
Browse files Browse the repository at this point in the history
  • Loading branch information
Sinthoras7 authored Mar 24, 2024
1 parent 0849933 commit 8765ba0
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions physica-manual.typ
Original file line number Diff line number Diff line change
Expand Up @@ -633,7 +633,7 @@ Typst built-in math operators: #linkurl(`math.op`, "https://typst.app/docs/refer
#v(1em)

Functions: `differential(`\*_args_, \*\*_kwargs_`)`, abbreviated as `dd(`...`)`.
- positional _args_: the variable names, then at the last *optionally* followed by an order number e.g. `2`, or an order array e.g. `[2,3]`, `[k]`, `[m n, lambda+1]`.
- positional _args_: the variable names, *optionally* followed by an order number e.g. `2`, or an order array e.g. `[2,3]`, `[k]`, `[m n, lambda+1]`.
- named _kwargs_:
- `d`: the differential symbol [default: `upright(d)`].
- `p`: the product symbol connecting the components [default: `none`].
Expand All @@ -648,7 +648,7 @@ pass a `compact:#true` argument: $dd(r,theta) "vs." dd(r,theta,compact:#true)$ (
// #set dd(compact: true) to set this param for all dd() invocations.

*Order assignment algorithm:*
- If there is no order number or order array, all variables has order 1.
- If there is no order number or order array, all variables have order 1.
- If there is an order number (not an array), then this order number is assigned to _every_ variable, e.g. `dd(x,y,2)` assigns $x <- 2, y <- 2$.
- If there is an order array, then the orders therein are assigned to the variables in order, e.g. `dd(f,x,y,[2,3])` assigns $x <- 2, y <- 3$.
- If the order array holds fewer elements than the number of variables, then the orders of the remaining variables are 1, e.g. `dd(x,y,z,[2,3])` assigns $x <- 2, y <- 3, z <- 1$.
Expand Down Expand Up @@ -701,7 +701,7 @@ pass a `compact:#true` argument: $dd(r,theta) "vs." dd(r,theta,compact:#true)$ (

Function: `derivative(`_f_, \*_args_, \*\*_kwargs_`)`, abbreviated as `dv(`...`)`.
- _f_: the function, which can be `#none` or omitted,
- positional _args_: the variable name, then at the last *optionally* followed by an order number e.g. `2`,
- positional _args_: the variable name, *optionally* followed by an order number e.g. `2`,
- named _kwargs_:
- `d`: the differential symbol [default: `upright(d)`].
- `s`: the "slash" separating the numerator and denominator [default: `none`], by default it produces the normal fraction form $dv(f,x)$. The most common non-default is `slash` or simply `\/`, so as to create a flat form $dv(f,x,s:\/)$ that fits inline.
Expand Down Expand Up @@ -747,14 +747,14 @@ Function: `derivative(`_f_, \*_args_, \*\*_kwargs_`)`, abbreviated as `dv(`...`)

Function: `partialderivative(`_f_, \*_args_, \*\*_kwargs_`)`, abbreviated as `pdv(`...`)`.
- _f_: the function, which can be `#none` or omitted,
- positional _args_: the variable names, then at last *optionally* followed by an order number e.g. `2`, or an order array e.g. `[2,3]`, `[k]`, `[m n, lambda+1]`.
- positional _args_: the variable names, *optionally* followed by an order number e.g. `2`, or an order array e.g. `[2,3]`, `[k]`, `[m n, lambda+1]`.
- named _kwargs_:
- `s`: the "slash" separating the numerator and denominator [default: `none`], by default it produces the normal fraction form $pdv(f,x)$. The most common non-default is `slash` or simply `\/`, so as to create a flat form $pdv(f,x,s:\/)$ that fits inline.
- `total`: the user-specified total order.
- If it is absent, then (1) if the orders assigned to all variables are numeric, the total order number will be *automatically computed*; (2) if non-number symbols are present, computation will be attempted with minimum effort, and a user override with argument `total` may be necessary.

*Order assignment algorithm:*
- If there is no order number or order array, all variables has order 1.
- If there is no order number or order array, all variables have order 1.
- If there is an order number (not an array), then this order number is assigned to _every_ variable, e.g. `pdv(f,x,y,2)` assigns $x <- 2, y <- 2$.
- If there is an order array, then the orders therein are assigned to the variables in order, e.g. `pdv(f,x,y,[2,3])` assigns $x <- 2, y <- 3$.
- If the order array holds fewer elements than the number of variables, then the orders of the remaining variables are 1, e.g. `pdv(f,x,y,z,[2,3])` assigns $x <- 2, y <- 3, z <- 1$.
Expand Down

0 comments on commit 8765ba0

Please sign in to comment.