A library for face detection based on vladmandic/human and TensorFlow/JS
npm i ngx-face-detection @vladmandic/human ismobilejs mathjs
or
yarn add ngx-face-detection @vladmandic/human ismobilejs mathjs
Add it to assets
{
"glob": "human.{js,js.map}",
"input": "node_modules/@vladmandic/human/dist",
"output": "./human"
},
{
"glob": "*.{bin,json}",
"input": "node_modules/@vladmandic/human/models",
"output": "./human/models"
},
{
"glob": "*.wasm",
"input": "node_modules/@vladmandic/human/assets",
"output": "./human/assets"
}
examples:
"ngx-face-detection": {
"projectType": "application",
"schematics": {
"@schematics/angular:component": {
"style": "scss"
},
"@schematics/angular:application": {
"strict": true
}
},
"root": "",
"sourceRoot": "src",
"prefix": "app",
"architect": {
"build": {
"builder": "@angular-devkit/build-angular:browser",
"options": {
"outputPath": "dist/ngx-face-detection",
"index": "src/index.html",
"main": "src/main.ts",
"polyfills": "src/polyfills.ts",
"tsConfig": "tsconfig.app.json",
"inlineStyleLanguage": "scss",
"assets": [
"src/favicon.ico",
"src/assets",
{
"glob": "human.{js,js.map}",
"input": "node_modules/@vladmandic/human/dist",
"output": "./human"
},
{
"glob": "*.{bin,json}",
"input": "node_modules/@vladmandic/human/models",
"output": "./human/models"
},
{
"glob": "*.wasm",
"input": "node_modules/@vladmandic/human/assets",
"output": "./human/assets"
}
],
"styles": [
"src/styles.scss"
],
"scripts": []
},
"configurations": {
"production": {
"budgets": [
{
"type": "initial",
"maximumWarning": "500kb",
"maximumError": "1mb"
},
{
"type": "anyComponentStyle",
"maximumWarning": "2kb",
"maximumError": "4kb"
}
],
"fileReplacements": [
{
"replace": "src/environments/environment.ts",
"with": "src/environments/environment.prod.ts"
}
],
"outputHashing": "all"
},
"development": {
"buildOptimizer": false,
"optimization": false,
"vendorChunk": true,
"extractLicenses": false,
"sourceMap": true,
"namedChunks": true
}
},
"defaultConfiguration": "production"
},
"serve": {
"builder": "@angular-devkit/build-angular:dev-server",
"configurations": {
"production": {
"browserTarget": "ngx-face-detection:build:production"
},
"development": {
"browserTarget": "ngx-face-detection:build:development"
}
},
"defaultConfiguration": "development"
},
"extract-i18n": {
"builder": "@angular-devkit/build-angular:extract-i18n",
"options": {
"browserTarget": "ngx-face-detection:build"
}
},
"test": {
"builder": "@angular-devkit/build-angular:karma",
"options": {
"main": "src/test.ts",
"polyfills": "src/polyfills.ts",
"tsConfig": "tsconfig.spec.json",
"karmaConfig": "karma.conf.js",
"inlineStyleLanguage": "scss",
"assets": [
"src/favicon.ico",
"src/assets"
],
"styles": [
"src/styles.scss"
],
"scripts": []
}
}
}
}
These variables are used when the module is loaded.
examples:
import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser';
import { environment } from '../environments/environment';
import { AppRoutingModule } from './app-routing.module';
import { AppComponent } from './app.component';
import { FaceDetectionModule } from "../../projects/face-detection/src/lib/face-detection.module";
import {FaceDetectionPageModule} from "./face-detection/face-detection.module";
@NgModule({
declarations: [AppComponent],
imports: [
BrowserModule,
AppRoutingModule,
FaceDetectionPageModule,
// ----------------------------------------------------------------------------- [ local lib ]
FaceDetectionModule.forRoot({
script: 'human/human.js',
// baseHref
resourcesUrl: '/ngx-face-detection/',
production: environment.production
})
],
providers: [],
bootstrap: [AppComponent]
})
export class AppModule {}
examples:
<ngx-face-detection (noAvailableStream)="noAvailableStream($event)" [stream]="stream" [bioassay]="live" [iris]="iris" [debug]="debug"></ngx-face-detection>
examples:
import {Subscription} from 'rxjs';
import {AfterViewInit, Component, ElementRef, OnInit, ViewChild} from '@angular/core';
import {
FaceDetectionComponent,
FaceDetectionService,
isMobile,
getUserMedia
} from "../../../projects/face-detection/src/public-api";
const img = '';
@Component({
selector: 'app-face-detection-page',
templateUrl: './face-detection.page.html',
styleUrls: ['./face-detection.page.scss']
})
export class FaceDetectionPage implements OnInit, AfterViewInit {
loading = true;
title = 'dev-face-camera';
live = true;
iris = true;
debug = true;
delay = 100;
photo: string = img;
rectPhoto: string = img;
stream!: MediaStream;
public isMobile = isMobile(window);
videoMaxWidth = 1440;
videoMaxHeight = 720;
get width() {
return this.el.nativeElement.clientWidth || document.body.clientWidth;
}
get height() {
return this.el.nativeElement.clientHeight || document.body.clientHeight;
}
// a subscription for screenshot of videos
lastfaceDetectionSub!: Subscription;
@ViewChild(FaceDetectionComponent, {static: true}) faceDetection!: FaceDetectionComponent;
@ViewChild('rectPhoto') rectPhotoEle!: ElementRef<HTMLImageElement>;
constructor(
private el: ElementRef<HTMLElement>,
private faceDetectionService: FaceDetectionService
) {
}
getCamera() {
try {
const {width, height, videoMaxWidth, videoMaxHeight, isMobile} = this;
getUserMedia(width, height, videoMaxWidth, videoMaxHeight, isMobile).then(async media => {
this.stream = media;
});
} catch (err) {
}
}
ngOnInit(): void {
this.getCamera();
this.faceDetection.beginDetect$.subscribe(
() => {
this.loading = false;
console.log('detection started');
},
error => {
console.log('error when detection start');
}
);
}
ngAfterViewInit() {
this.takePhoto();
}
preload() {
this.faceDetectionService.preload({live: this.live, iris: this.iris, debug: this.debug});
}
get rect() {
return isMobile(window)
? {
x: 0,
y: 0,
width: this.el.nativeElement.clientWidth,
height: this.el.nativeElement.clientHeight
}
: {
x: this.el.nativeElement.clientWidth / 4,
y: 0,
width: this.el.nativeElement.clientWidth / 2,
height: this.el.nativeElement.clientHeight
};
}
takePhoto() {
if (this.lastfaceDetectionSub) {
this.lastfaceDetectionSub.unsubscribe();
}
this.photo = img;
this.rectPhoto = img;
console.log(this.rect);
this.lastfaceDetectionSub = this.faceDetection.takePhoto(600, 800, this.rect, true).subscribe(result => {
const {photo, rectPhoto} = result;
this.photo = photo || img;
this.rectPhoto = rectPhoto || img;
});
}
takeBetterPhoto() {
if (this.lastfaceDetectionSub) {
this.lastfaceDetectionSub.unsubscribe();
}
this.photo = img;
this.rectPhoto = img;
this.lastfaceDetectionSub = this.faceDetection.takeBetterPhoto(600, 800, this.rect, true).subscribe(d => {
const {photo, rectPhoto} = d;
this.photo = photo || img;
this.rectPhoto = rectPhoto || img;
console.log('find a photo can be used');
});
}
liveness(action: string) {
if (this.lastfaceDetectionSub) {
this.lastfaceDetectionSub.unsubscribe();
}
this.lastfaceDetectionSub = this.faceDetection.liveness(action as any, this.rect).subscribe(result => {
console.log(result);
console.log('successful liveness detection');
});
}
livenessArray() {
if (this.lastfaceDetectionSub) {
this.lastfaceDetectionSub.unsubscribe();
}
this.lastfaceDetectionSub = this.faceDetection.livenessArray(['facingLeft', 'facingRight'], this.rect).subscribe(
() => {
},
() => {
},
() => {
console.log('successful liveness detection');
}
);
}
livenessArrayTakeBetterPhoto(action: any) {
if (this.lastfaceDetectionSub) {
this.lastfaceDetectionSub.unsubscribe();
}
this.photo = img;
this.rectPhoto = img;
this.lastfaceDetectionSub = this.faceDetection
.livenessArrayTakeBetterPhoto(
[action],
600,
800,
this.rect,
true
)
.subscribe(d => {
const {photo, rectPhoto} = d;
this.photo = photo || img;
this.rectPhoto = rectPhoto || img;
console.log('successful liveness detection');
});
}
play() {
this.faceDetection.play();
}
pause() {
this.faceDetection.pause();
}
/**
* can't find available video stream
*/
noAvailableStream(res: boolean) {
//
console.log('no camera available')
}
}