Skip to content

Commit

Permalink
Merge d1a75af into efd272a
Browse files Browse the repository at this point in the history
  • Loading branch information
awaelchli authored Mar 8, 2021
2 parents efd272a + d1a75af commit 5eba8ea
Show file tree
Hide file tree
Showing 2 changed files with 51 additions and 11 deletions.
6 changes: 3 additions & 3 deletions pytorch_lightning/plugins/training_type/dp.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,9 +49,9 @@ def reduce(self, tensor, *args, **kwargs):

else:

def _reduce(tensor: torch.Tensor):
dtype_tensor = tensor.dtype
return tensor.float().mean().type(dtype_tensor)
def _reduce(t: torch.Tensor):
dtype_tensor = t.dtype
return t.float().mean().type(dtype_tensor)

tensor = apply_to_collection(tensor, torch.Tensor, _reduce)

Expand Down
56 changes: 48 additions & 8 deletions tests/accelerators/test_dp.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,14 @@
# limitations under the License.
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader

import pytorch_lightning as pl
import tests.helpers.pipelines as tpipes
import tests.helpers.utils as tutils
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.core import memory
from tests.helpers import BoringModel
from tests.helpers import BoringModel, RandomDataset
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
Expand Down Expand Up @@ -125,19 +126,58 @@ def test_dp_test(tmpdir):
assert torch.all(torch.eq(old_weights, new_weights))


class ReductionTestModel(BoringModel):

def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)

def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)

def test_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)

def add_outputs(self, output, device):
output.update({
"reduce_int": torch.tensor(device.index, dtype=torch.int, device=device),
"reduce_float": torch.tensor(device.index, dtype=torch.float, device=device),
})

def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output

def validation_step(self, batch, batch_idx):
output = super().validation_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output

def test_step(self, batch, batch_idx):
output = super().test_step(batch, batch_idx)
self.add_outputs(output, batch.device)
return output

def training_epoch_end(self, outputs):
assert outputs[0]["loss"].shape == torch.Size([])
assert outputs[0]["reduce_int"].item() == 0 # mean([0, 1]) = 0
assert outputs[0]["reduce_float"].item() == 0.5 # mean([0., 1.]) = 0.5


@RunIf(min_gpus=2)
def test_dp_training_step_dict(tmpdir):
"""
This test verify dp properly reduce dictionaries
"""

model = BoringModel()
""" This test verifies that dp properly reduces dictionaries """
model = ReductionTestModel()
model.training_step_end = None
model.validation_step_end = None
model.test_step_end = None

trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=2,
limit_val_batches=0,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
gpus=2,
accelerator='dp',
)
Expand Down

0 comments on commit 5eba8ea

Please sign in to comment.