Skip to content

Commit

Permalink
[Metrics] Confusion matrix class interface (#4348)
Browse files Browse the repository at this point in the history
* docs + precision + recall + f_beta + refactor

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* rebase

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* fixes

Co-authored-by: Teddy Koker <teddy.koker@gmail.com>

* added missing file

* docs

* docs

* extra import

* add confusion matrix

* add to docs

* add test

* pep8 + isort

* update tests

* move util function

* unify functional and class

* add to init

* remove old implementation

* update tests

* pep8

* add duplicate

* fix doctest

* Update pytorch_lightning/metrics/classification/confusion_matrix.py

Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>

* changelog

* bullet point args

* bullet docs

* bullet docs

Co-authored-by: ananyahjha93 <ananya@pytorchlightning.ai>
Co-authored-by: Teddy Koker <teddy.koker@gmail.com>
Co-authored-by: Justus Schock <12886177+justusschock@users.noreply.github.com>
Co-authored-by: chaton <thomas@grid.ai>
Co-authored-by: Roger Shieh <55400948+s-rog@users.noreply.github.com>
Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com>
  • Loading branch information
7 people authored Oct 30, 2020
1 parent 20a8eaa commit e0b856c
Show file tree
Hide file tree
Showing 12 changed files with 384 additions and 92 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Added support for string values in `Trainer`'s `profiler` parameter ([#3656](https://github.com/PyTorchLightning/pytorch-lightning/pull/3656))


- Added `ConfusionMatrix` class interface ([#4348](https://github.com/PyTorchLightning/pytorch-lightning/pull/4348))


### Changed


Expand Down
8 changes: 7 additions & 1 deletion docs/source/metrics.rst
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,12 @@ Fbeta
.. autoclass:: pytorch_lightning.metrics.classification.Fbeta
:noindex:

ConfusionMatrix
~~~~~~~~~~~~~~~

.. autoclass:: pytorch_lightning.metrics.classification.ConfusionMatrix
:noindex:

Regression Metrics
------------------

Expand Down Expand Up @@ -275,7 +281,7 @@ average_precision [func]
confusion_matrix [func]
~~~~~~~~~~~~~~~~~~~~~~~

.. autofunction:: pytorch_lightning.metrics.functional.classification.confusion_matrix
.. autofunction:: pytorch_lightning.metrics.functional.confusion_matrix
:noindex:


Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,8 @@
Accuracy,
Precision,
Recall,
Fbeta
Fbeta,
ConfusionMatrix
)

from pytorch_lightning.metrics.regression import (
Expand Down
1 change: 1 addition & 0 deletions pytorch_lightning/metrics/classification/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@
from pytorch_lightning.metrics.classification.accuracy import Accuracy
from pytorch_lightning.metrics.classification.precision_recall import Precision, Recall
from pytorch_lightning.metrics.classification.f_beta import Fbeta
from pytorch_lightning.metrics.classification.confusion_matrix import ConfusionMatrix
19 changes: 2 additions & 17 deletions pytorch_lightning/metrics/classification/accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
import torch
from torch import nn
from pytorch_lightning.metrics.metric import Metric
from pytorch_lightning.metrics.utils import _input_format_classification


class Accuracy(Metric):
Expand Down Expand Up @@ -60,7 +61,6 @@ class Accuracy(Metric):
tensor(0.5000)
"""

def __init__(
self,
threshold: float = 0.5,
Expand All @@ -79,21 +79,6 @@ def __init__(

self.threshold = threshold

def _input_format(self, preds: torch.Tensor, target: torch.Tensor):
if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
raise ValueError(
"preds and target must have same number of dimensions, or one additional dimension for preds"
)

if len(preds.shape) == len(target.shape) + 1:
# multi class probabilites
preds = torch.argmax(preds, dim=1)

if len(preds.shape) == len(target.shape) and preds.dtype == torch.float:
# binary or multilabel probablities
preds = (preds >= self.threshold).long()
return preds, target

def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Expand All @@ -102,7 +87,7 @@ def update(self, preds: torch.Tensor, target: torch.Tensor):
preds: Predictions from model
target: Ground truth values
"""
preds, target = self._input_format(preds, target)
preds, target = _input_format_classification(preds, target, self.threshold)
assert preds.shape == target.shape

self.correct += torch.sum(preds == target)
Expand Down
111 changes: 111 additions & 0 deletions pytorch_lightning/metrics/classification/confusion_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Optional

import torch

from pytorch_lightning.metrics.metric import Metric
from pytorch_lightning.metrics.functional.confusion_matrix import (
_confusion_matrix_update,
_confusion_matrix_compute
)


class ConfusionMatrix(Metric):
"""
Computes the confusion matrix. Works with binary, multiclass, and multilabel data.
Accepts logits from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.
Forward accepts
- ``preds`` (float or long tensor): ``(N, ...)`` or ``(N, C, ...)`` where C is the number of classes
- ``target`` (long tensor): ``(N, ...)``
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
This is the case for binary and multi-label logits.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
num_classes: Number of classes in the dataset.
normalize: Normalization mode for confusion matrix. Choose from
- ``None``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
threshold:
Threshold value for binary or multi-label logits. default: 0.5
compute_on_step:
Forward only calls ``update()`` and return None if this is set to False. default: True
dist_sync_on_step:
Synchronize metric state across processes at each ``forward()``
before returning the value at the step. default: False
process_group:
Specify the process group on which synchronization is called. default: None (which selects the entire world)
Example:
>>> from pytorch_lightning.metrics import ConfusionMatrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confmat = ConfusionMatrix(num_classes=2)
>>> confmat(preds, target)
tensor([[2., 0.],
[1., 1.]])
"""
def __init__(
self,
num_classes: int,
normalize: Optional[str] = None,
threshold: float = 0.5,
compute_on_step: bool = True,
dist_sync_on_step: bool = False,
process_group: Optional[Any] = None,
):

super().__init__(
compute_on_step=compute_on_step,
dist_sync_on_step=dist_sync_on_step,
process_group=process_group,
)
self.num_classes = num_classes
self.normalize = normalize
self.threshold = threshold

allowed_normalize = ('true', 'pred', 'all', None)
assert self.normalize in allowed_normalize, \
f"Argument average needs to one of the following: {allowed_normalize}"

self.add_state("confmat", default=torch.zeros(num_classes, num_classes), dist_reduce_fx="sum")

def update(self, preds: torch.Tensor, target: torch.Tensor):
"""
Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
confmat = _confusion_matrix_update(preds, target, self.num_classes, self.threshold)
self.confmat += confmat

def compute(self) -> torch.Tensor:
"""
Computes confusion matrix
"""
return _confusion_matrix_compute(self.confmat, self.normalize)
2 changes: 1 addition & 1 deletion pytorch_lightning/metrics/functional/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@
auc,
auroc,
average_precision,
confusion_matrix,
dice_score,
f1_score,
fbeta_score,
Expand Down Expand Up @@ -44,3 +43,4 @@
from pytorch_lightning.metrics.functional.mean_squared_log_error import mean_squared_log_error
from pytorch_lightning.metrics.functional.psnr import psnr
from pytorch_lightning.metrics.functional.ssim import ssim
from pytorch_lightning.metrics.functional.confusion_matrix import confusion_matrix
42 changes: 0 additions & 42 deletions pytorch_lightning/metrics/functional/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -301,48 +301,6 @@ def _confmat_normalize(cm):
return cm


def confusion_matrix(
pred: torch.Tensor,
target: torch.Tensor,
normalize: bool = False,
num_classes: Optional[int] = None
) -> torch.Tensor:
"""
Computes the confusion matrix C where each entry C_{i,j} is the number of observations
in group i that were predicted in group j.
Args:
pred: estimated targets
target: ground truth labels
normalize: normalizes confusion matrix
num_classes: number of classes
Return:
Tensor, confusion matrix C [num_classes, num_classes ]
Example:
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([0, 2, 3])
>>> confusion_matrix(x, y)
tensor([[0., 1., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]])
"""
num_classes = get_num_classes(pred, target, num_classes)

unique_labels = (target.view(-1) * num_classes + pred.view(-1)).to(torch.int)

bins = torch.bincount(unique_labels, minlength=num_classes ** 2)
cm = bins.reshape(num_classes, num_classes).squeeze().float()

if normalize:
cm = _confmat_normalize(cm)

return cm


def precision_recall(
pred: torch.Tensor,
target: torch.Tensor,
Expand Down
96 changes: 96 additions & 0 deletions pytorch_lightning/metrics/functional/confusion_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional

import torch

from pytorch_lightning.utilities import rank_zero_warn
from pytorch_lightning.metrics.utils import _input_format_classification


def _confusion_matrix_update(preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
threshold: float = 0.5) -> torch.Tensor:
preds, target = _input_format_classification(preds, target, threshold)
unique_mapping = (target.view(-1) * num_classes + preds.view(-1)).to(torch.long)
bins = torch.bincount(unique_mapping, minlength=num_classes ** 2)
confmat = bins.reshape(num_classes, num_classes)
return confmat


def _confusion_matrix_compute(confmat: torch.Tensor,
normalize: Optional[str] = None) -> torch.Tensor:
allowed_normalize = ('true', 'pred', 'all', None)
assert normalize in allowed_normalize, \
f"Argument average needs to one of the following: {allowed_normalize}"
confmat = confmat.float()
if normalize is not None:
if normalize == 'true':
cm = confmat / confmat.sum(axis=1, keepdim=True)
elif normalize == 'pred':
cm = confmat / confmat.sum(axis=0, keepdim=True)
elif normalize == 'all':
cm = confmat / confmat.sum()
nan_elements = cm[torch.isnan(cm)].nelement()
if nan_elements != 0:
cm[torch.isnan(cm)] = 0
rank_zero_warn(f'{nan_elements} nan values found in confusion matrix have been replaced with zeros.')
return cm
return confmat


def confusion_matrix(
preds: torch.Tensor,
target: torch.Tensor,
num_classes: int,
normalize: Optional[str] = None,
threshold: float = 0.5
) -> torch.Tensor:
"""
Computes the confusion matrix. Works with binary, multiclass, and multilabel data.
Accepts logits from a model output or integer class values in prediction.
Works with multi-dimensional preds and target.
If preds and target are the same shape and preds is a float tensor, we use the ``self.threshold`` argument.
This is the case for binary and multi-label logits.
If preds has an extra dimension as in the case of multi-class scores we perform an argmax on ``dim=1``.
Args:
preds: (float or long tensor), Either a ``(N, ...)`` tensor with labels or
``(N, C, ...)`` where C is the number of classes, tensor with logits/probabilities
target: ``target`` (long tensor), tensor with shape ``(N, ...)`` with ground true labels
num_classes: Number of classes in the dataset.
normalize: Normalization mode for confusion matrix. Choose from
- ``None``: no normalization (default)
- ``'true'``: normalization over the targets (most commonly used)
- ``'pred'``: normalization over the predictions
- ``'all'``: normalization over the whole matrix
threshold:
Threshold value for binary or multi-label logits. default: 0.5
Example:
>>> from pytorch_lightning.metrics.functional import confusion_matrix
>>> target = torch.tensor([1, 1, 0, 0])
>>> preds = torch.tensor([0, 1, 0, 0])
>>> confusion_matrix(preds, target, num_classes=2)
tensor([[2., 0.],
[1., 1.]])
"""
confmat = _confusion_matrix_update(preds, target, num_classes, threshold)
return _confusion_matrix_compute(confmat, normalize)
28 changes: 28 additions & 0 deletions pytorch_lightning/metrics/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,3 +67,31 @@ def _check_same_shape(pred: torch.Tensor, target: torch.Tensor):
""" Check that predictions and target have the same shape, else raise error """
if pred.shape != target.shape:
raise RuntimeError('Predictions and targets are expected to have the same shape')


def _input_format_classification(preds: torch.Tensor, target: torch.Tensor, threshold: float):
""" Convert preds and target tensors into label tensors
Args:
preds: either tensor with labels, tensor with probabilities/logits or
multilabel tensor
target: tensor with ground true labels
threshold: float used for thresholding multilabel input
Returns:
preds: tensor with labels
target: tensor with labels
"""
if not (len(preds.shape) == len(target.shape) or len(preds.shape) == len(target.shape) + 1):
raise ValueError(
"preds and target must have same number of dimensions, or one additional dimension for preds"
)

if len(preds.shape) == len(target.shape) + 1:
# multi class probabilites
preds = torch.argmax(preds, dim=1)

if len(preds.shape) == len(target.shape) and preds.dtype == torch.float:
# binary or multilabel probablities
preds = (preds >= threshold).long()
return preds, target
Loading

0 comments on commit e0b856c

Please sign in to comment.