Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ref: continue #3733 #3767

Merged
merged 2 commits into from
Oct 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 4 additions & 15 deletions pytorch_lightning/trainer/data_loading.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@
from abc import ABC, abstractmethod
from typing import Union, List, Tuple, Callable, Optional

import torch.distributed as torch_distrib
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

from pytorch_lightning.accelerators.base_backend import Accelerator
from pytorch_lightning.accelerators.base_backend import BackendType
from pytorch_lightning.core import LightningModule
from pytorch_lightning.utilities import rank_zero_warn
Expand Down Expand Up @@ -75,6 +75,7 @@ class TrainerDataLoadingMixin(ABC):
limit_val_batches: Union[int, float]
limit_test_batches: Union[int, float]
replace_sampler_ddp: bool
accelerator_backend: Accelerator
num_nodes: int
num_processes: int
distributed_backend: Optional[str]
Expand Down Expand Up @@ -337,18 +338,6 @@ def request_dataloader(self, dataloader_fx: Callable) -> DataLoader:
"""
dataloader = dataloader_fx()

# get the function we'll use to get data
if self.use_ddp or self.use_ddp2:
# all processes wait until data download has happened
torch_distrib.barrier()

# data download/load on TPU
elif self.use_tpu and XLA_AVAILABLE:
# all processes wait until data download has happened
torch_xla.core.xla_model.rendezvous('pl.TrainerDataLoadingMixin.get_dataloaders')

elif self.use_horovod:
# all processes wait until data download has happened
hvd.join()

if self.accelerator_backend is not None:
self.accelerator_backend.barrier('get_dataloaders')
return dataloader
5 changes: 2 additions & 3 deletions pytorch_lightning/trainer/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -696,9 +696,6 @@ def test(
# --------------------
self.verbose_test = verbose

if self.global_rank != 0:
return

# If you supply a datamodule you can't supply train_dataloader or val_dataloaders
if test_dataloaders and datamodule:
raise MisconfigurationException(
Expand Down Expand Up @@ -738,6 +735,8 @@ def __test_using_best_weights(self, ckpt_path, test_dataloaders):
f'specify a path for a checkpoint .test(ckpt_path=PATH)'
)
return {}
if self.accelerator_backend is not None:
self.accelerator_backend.barrier()

ckpt = pl_load(ckpt_path, map_location=lambda storage, loc: storage)
model.load_state_dict(ckpt['state_dict'])
Expand Down
9 changes: 2 additions & 7 deletions pytorch_lightning/trainer/training_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -181,13 +181,8 @@ def on_train_end(self):
if self.trainer.global_rank == 0:
self.trainer.profiler.describe()

if self.trainer.global_rank == 0:
for proc in self.trainer.interactive_ddp_procs:
subprocess.Popen.kill(proc)

# clean up dist group
if self.trainer.use_ddp or self.trainer.use_ddp2:
torch_distrib.destroy_process_group()
# give accelerators a chance to finish
self.trainer.accelerator_backend.on_train_end()

# clear mem
if self.trainer.on_gpu:
Expand Down
Empty file added tests/backends/__init__.py
Empty file.
43 changes: 43 additions & 0 deletions tests/backends/ddp_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
"""
Runs either `.fit()` or `.test()` on a single node across multiple gpus.
"""
from argparse import ArgumentParser

from pytorch_lightning import Trainer, seed_everything
from tests.base import EvalModelTemplate
import os
import torch


def main():
seed_everything(1234)
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parser)
parser.add_argument('--trainer_method', default='fit')
parser.add_argument('--tmpdir')
parser.set_defaults(gpus=2)
parser.set_defaults(distributed_backend="ddp")
args = parser.parse_args()

model = EvalModelTemplate()
trainer = Trainer.from_argparse_args(args)

result = {}
if args.trainer_method == 'fit':
trainer.fit(model)
result = {'status': 'complete', 'method': args.trainer_method, 'result': None}
if args.trainer_method == 'test':
result = trainer.test(model)
result = {'status': 'complete', 'method': args.trainer_method, 'result': result}
if args.trainer_method == 'fit_test':
trainer.fit(model)
result = trainer.test(model)
result = {'status': 'complete', 'method': args.trainer_method, 'result': result}

if len(result) > 0:
file_path = os.path.join(args.tmpdir, 'ddp.result')
torch.save(result, file_path)


if __name__ == '__main__':
main()