Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix amp autocast #6080

Merged
merged 11 commits into from
Feb 19, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Fixed

- Fixed incorrect yield logic for the amp autocast context manager ([#6080](https://github.com/PyTorchLightning/pytorch-lightning/pull/6080))


## [1.2.0] - 2021-02-18

Expand Down
3 changes: 2 additions & 1 deletion pytorch_lightning/plugins/precision/native_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,4 +91,5 @@ def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None:
@contextmanager
def train_step_context(self) -> Generator[autocast, None, None]:
"""Enable autocast context"""
yield torch.cuda.amp.autocast()
with torch.cuda.amp.autocast():
yield
22 changes: 15 additions & 7 deletions tests/models/test_amp.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,16 @@
from tests.helpers import BoringModel


class AMPTestModel(BoringModel):

def training_step(self, batch, batch_idx):
assert torch.is_autocast_enabled()
output = self(batch)
assert output.dtype == torch.float16
loss = self.loss(batch, output)
return {"loss": loss}


@pytest.mark.skip(reason='dp + amp not supported currently') # TODO
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_amp_single_gpu_dp(tmpdir):
Expand All @@ -41,7 +51,7 @@ def test_amp_single_gpu_dp(tmpdir):
precision=16,
)

model = BoringModel()
model = AMPTestModel()
# tutils.run_model_test(trainer_options, model)
trainer.fit(model)

Expand All @@ -60,10 +70,9 @@ def test_amp_single_gpu_ddp_spawn(tmpdir):
precision=16,
)

model = BoringModel()
model = AMPTestModel()
# tutils.run_model_test(trainer_options, model)
trainer.fit(model)

assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"


Expand All @@ -81,7 +90,7 @@ def test_amp_multi_gpu_dp(tmpdir):
precision=16,
)

model = BoringModel()
model = AMPTestModel()
# tutils.run_model_test(trainer_options, model)
trainer.fit(model)

Expand All @@ -100,10 +109,9 @@ def test_amp_multi_gpu_ddp_spawn(tmpdir):
precision=16,
)

model = BoringModel()
model = AMPTestModel()
# tutils.run_model_test(trainer_options, model)
trainer.fit(model)

assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}"


Expand All @@ -122,7 +130,7 @@ def test_amp_gpu_ddp_slurm_managed(tmpdir):
# simulate setting slurm flags
tutils.set_random_master_port()

model = BoringModel()
model = AMPTestModel()

# exp file to get meta
logger = tutils.get_default_logger(tmpdir)
Expand Down