Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove deprecated optimizer argument from manual_backward #8287

Merged
merged 4 commits into from
Jul 6, 2021
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -304,6 +304,9 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Removed deprecated trainer attributes - `on_cpu`, `on_tpu`, `use_tpu`, `on_gpu`, `use_dp`, `use_ddp`, `use_ddp2`, `use_horovod`, `use_single_gpu` ([#7501](https://github.com/PyTorchLightning/pytorch-lightning/pull/7501))


- Removed deprecated `optimizer` argument in `LightningModule.manual_backward()`; Toggling optimizers in manual optimization should be done using `LightningModule.{un}toggle_optimizer()` ([#8287](https://github.com/PyTorchLightning/pytorch-lightning/pull/8287))


### Fixed

- Fixed `lr_scheduler` checkpointed state by calling `update_lr_schedulers` before saving checkpoints ([#7877](https://github.com/PyTorchLightning/pytorch-lightning/pull/7877))
Expand Down
6 changes: 3 additions & 3 deletions benchmarks/test_sharded_parity.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,17 +42,17 @@ def training_step(self, batch, batch_idx, optimizer_idx):
(opt_a, opt_b) = self.optimizers(use_pl_optimizer=True)
loss_1 = self.step(batch)

self.manual_backward(loss_1, opt_a)
self.manual_backward(loss_1)
opt_a.step()

# fake discriminator
loss_2 = self.step(batch[0])

# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, opt_b)
self.manual_backward(loss_2)
# todo: understand why synchronization breaks there.
# self.manual_backward(loss_2, opt_a, retain_graph=True)
# self.manual_backward(loss_2, retain_graph=True)
opt_b.step()

assert self.layer.weight.grad is None or torch.all(self.layer.weight.grad == 0)
Expand Down
7 changes: 1 addition & 6 deletions pytorch_lightning/core/lightning.py
Original file line number Diff line number Diff line change
Expand Up @@ -1392,7 +1392,7 @@ def configure_optimizers(self):
"""
rank_zero_warn("`configure_optimizers` must be implemented to be used with the Lightning Trainer")

def manual_backward(self, loss: Tensor, optimizer: Optional[Optimizer] = None, *args, **kwargs) -> None:
def manual_backward(self, loss: Tensor, *args, **kwargs) -> None:
"""
Call this directly from your training_step when doing optimizations manually.
By using this we can ensure that all the proper scaling when using 16-bit etc has been done for you.
Expand All @@ -1411,11 +1411,6 @@ def training_step(...):
self.manual_backward(loss)
opt.step()
"""
if optimizer is not None:
rank_zero_deprecation(
"`optimizer` argument to `manual_backward` is deprecated in v1.2 and will be removed in v1.4"
)

# make sure we're using manual opt
self._verify_is_manual_optimization('manual_backward')

Expand Down
26 changes: 0 additions & 26 deletions tests/deprecated_api/test_remove_1-4.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,32 +26,6 @@ def test_v1_4_0_deprecated_imports():
from pytorch_lightning.utilities.argparse_utils import _gpus_arg_default # noqa: F811 F401


def test_v1_4_0_deprecated_manual_optimization_optimizer(tmpdir):

class TestModel(BoringModel):

def training_step(self, batch, *_, **kwargs):
opt = self.optimizers()
output = self.layer(batch)
loss = self.loss(batch, output)
self.manual_backward(loss, opt)

@property
def automatic_optimization(self):
return False

model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
)
with pytest.deprecated_call(
match="`optimizer` argument to `manual_backward` is deprecated in v1.2 and will be removed in v1.4"
):
trainer.fit(model)


def test_v1_4_0_deprecated_checkpoint_on(tmpdir):
from pytorch_lightning.callbacks.model_checkpoint import warning_cache
warning_cache.clear()
Expand Down
54 changes: 27 additions & 27 deletions tests/trainer/optimization/test_manual_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,16 +42,16 @@ def training_step(self, batch, batch_idx):
assert torch.all(self.layer.weight.grad == 0)

loss_1 = self.step(batch[0])
self.manual_backward(loss_1, opt_a)
self.manual_backward(loss_1)
opt_a.step()
opt_a.zero_grad()
assert torch.all(self.layer.weight.grad == 0)

loss_2 = self.step(batch[0])
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, opt_b, retain_graph=True)
self.manual_backward(loss_2, opt_a)
self.manual_backward(loss_2, retain_graph=True)
self.manual_backward(loss_2)
assert self.layer.weight.grad is not None
opt_b.step()
opt_b.zero_grad()
Expand Down Expand Up @@ -254,7 +254,7 @@ def training_step(self, batch, batch_idx):

if self.should_update:

self.manual_backward(loss, opt)
self.manual_backward(loss)
opt.step()
opt.zero_grad()

Expand Down Expand Up @@ -385,7 +385,7 @@ def training_step(self, batch, batch_idx):

if self.should_update:

self.manual_backward(loss, opt)
self.manual_backward(loss)
if self.should_have_updated:
opt.step()
opt.zero_grad()
Expand Down Expand Up @@ -458,7 +458,7 @@ def training_step(self, batch, batch_idx):
if self.layer.weight.grad is not None:
assert torch.all(self.layer.weight.grad == 0)

self.manual_backward(loss_1, opt_a)
self.manual_backward(loss_1)
opt_a.step()

# fake discriminator
Expand All @@ -467,8 +467,8 @@ def training_step(self, batch, batch_idx):

# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, opt_b, retain_graph=True)
self.manual_backward(loss_2, opt_a, retain_graph=True)
self.manual_backward(loss_2, retain_graph=True)
self.manual_backward(loss_2, retain_graph=True)

assert self.layer.weight.grad is not None
opt_b.step()
Expand Down Expand Up @@ -542,7 +542,7 @@ def optimizer_closure():
loss = compute_loss()
losses.append(loss)
retain_graph = (num_backward - 1) != backward_idx
self.manual_backward(loss, opt, retain_graph=retain_graph)
self.manual_backward(loss, retain_graph=retain_graph)
# emulate MC dropout training
loss = torch.stack(losses).mean()
self._losses.append(loss)
Expand Down Expand Up @@ -604,7 +604,7 @@ def optimizer_closure():
num_backward = 1
for backward_idx in range(num_backward + 1):
retain_graph = num_backward != backward_idx # noqa E225
self.manual_backward(loss_1, opt, retain_graph=retain_graph)
self.manual_backward(loss_1, retain_graph=retain_graph)

weight_before = self.layer.weight.clone()

Expand Down Expand Up @@ -661,7 +661,7 @@ def optimizer_closure():
num_backward = 1
for backward_idx in range(num_backward + 1):
retain_graph = num_backward != backward_idx # noqa E225
self.manual_backward(loss_1, opt, retain_graph=retain_graph)
self.manual_backward(loss_1, retain_graph=retain_graph)

opt.step(closure=optimizer_closure)
opt.zero_grad()
Expand Down Expand Up @@ -719,12 +719,12 @@ def compute_loss():
def gen_closure():
loss_gen = compute_loss()
self.log("loss_gen", loss_gen, on_step=True, on_epoch=True)
self.manual_backward(loss_gen, opt_gen)
self.manual_backward(loss_gen)

def dis_closure():
loss_dis = compute_loss()
self.log("loss_dis", loss_dis, on_step=True, on_epoch=True)
self.manual_backward(loss_dis, opt_dis)
self.manual_backward(loss_dis)

# this will accumulate gradients for 2 batches and then call opt_gen.step()
gen_closure()
Expand Down Expand Up @@ -813,8 +813,8 @@ def compute_loss():
loss_zeros = self.loss_zeros(None, predictions)
return loss_ones, loss_zeros

def make_manual_backward(loss, opt, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, opt, retain_graph=retain_graph)
def make_manual_backward(loss, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, retain_graph=retain_graph)
if make_optimizer_step:
grad_clone = self.layer.weight.grad.clone()
assert self.manual_sync_grad()
Expand All @@ -823,13 +823,13 @@ def make_manual_backward(loss, opt, retain_graph=False, make_optimizer_step=True

def gen_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, opt_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, opt_gen, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_gen_optimizer_step)

def dis_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, opt_dis, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, opt_dis, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_dis_optimizer_step)

# this will accumulate gradients for 2 batches and then call opt_gen.step()
if make_gen_optimizer_step:
Expand Down Expand Up @@ -917,8 +917,8 @@ def compute_loss():
loss_zeros = self.loss_zeros(None, predictions)
return loss_ones, loss_zeros

def make_manual_backward(loss, opt, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, opt, retain_graph=retain_graph)
def make_manual_backward(loss, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, retain_graph=retain_graph)
if make_optimizer_step:
grad_clone = self.layer.weight.grad.clone()
assert self.manual_sync_grad()
Expand All @@ -927,13 +927,13 @@ def make_manual_backward(loss, opt, retain_graph=False, make_optimizer_step=True

def gen_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, opt_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, opt_gen, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_gen_optimizer_step)

def dis_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, opt_dis, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, opt_dis, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_dis_optimizer_step)

# this will accumulate gradients for 2 batches and then call opt_gen.step()
with opt_gen.toggle_model(sync_grad=make_gen_optimizer_step):
Expand Down Expand Up @@ -1055,7 +1055,7 @@ def training_step(self, batch, batch_idx):
self.log("loss_d", loss_d, prog_bar=True)

optimizer.zero_grad()
self.manual_backward(loss_d, optimizer)
self.manual_backward(loss_d)
optimizer.step()
self.untoggle_optimizer(optimizer_idx)

Expand All @@ -1068,7 +1068,7 @@ def training_step(self, batch, batch_idx):
self.log("loss_g", loss_g, prog_bar=True)

optimizer.zero_grad()
self.manual_backward(loss_g, optimizer)
self.manual_backward(loss_g)
optimizer.step()
self.untoggle_optimizer(optimizer_idx)

Expand Down
4 changes: 2 additions & 2 deletions tests/trainer/optimization/test_multiple_optimizers.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,13 +108,13 @@ def training_step(self, batch, batch_idx):
loss_1 = self.step(batch[0])

# fake generator
self.manual_backward(loss_1, opt_a)
self.manual_backward(loss_1)
opt_a.step()
opt_a.zero_grad()

# fake discriminator
loss_2 = self.step(batch[0])
self.manual_backward(loss_2, opt_b)
self.manual_backward(loss_2)
opt_b.step()
opt_b.zero_grad()

Expand Down