HelloGPT(
(tok_embeddings): Embedding(32765, 768)
(rotary_emb): RotaryEmbedding(head_dim=64, max_seq_len=1024)
(layers): ModuleList(
(0-11): 12 x Decoder(
(ln1): RMSNorm(hidden_size=768, eps=1e-06)
(attn): Attention(
(q_proj): Linear(in_features=768, out_features=768, bias=False)
(k_proj): Linear(in_features=768, out_features=768, bias=False)
(v_proj): Linear(in_features=768, out_features=768, bias=False)
(o_proj): Linear(in_features=768, out_features=768, bias=False)
)
(ln2): RMSNorm(hidden_size=768, eps=1e-06)
(mlp): MLP(
(gate_proj): Linear(in_features=768, out_features=1536, bias=False)
(up_proj): Linear(in_features=768, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=768, bias=False)
)
)
)
(norm): RMSNorm(hidden_size=768, eps=1e-06)
(ln2): Linear(in_features=768, out_features=32765, bias=False)
)
cd E:\GPT
conda install mamba -c conda-forge
mamba create -n HelloGPT pytorch pytorch-cuda=12.1 -c pytorch -c nvidia -c conda-forge
conda activate HelloGPT
conda install numpy transformers tiktoken tensorboard sentencepiece-python jieba emoji -c conda-forge
pip install opencc-python-reimplemented -i https://pypi.tuna.tsinghua.edu.cn/simple
python test_cuda.py
python test_SPDA.py
D:\vscode\Code.exe
import os
class Fileset(list):
def __init__(self, path, ext='', _read=None):
if isinstance(path, str):
self.root = path
self.extend(f for f in os.listdir(self.root) if f.endswith(ext))
self._read = _read
def __getitem__(self, index):
if isinstance(index, int): # index是索引
if self._read:
return self._read(os.path.join(self.root, super().__getitem__(index)))
else:
return os.path.join(self.root, super().__getitem__(index))
else: # index是切片
fileset = Fileset(None)
fileset.root = self.root
fileset._read = self._read
fileset.extend(super().__getitem__(index))
return fileset
def getFileName(self, index):
fname, ext = os.path.splitext(super().__getitem__(index))
return fname
from tokenizer import tokenizer
token_eos = 2
def readOne(filePath):
retn = []
with open(file=filePath, encoding='utf-8') as f:
for line in f:
retn += tokenizer.encode(line).ids
retn.append(token_eos)
return retn
class Hcorpus():
def __init__(self, path, ext='txt', fileset_idx=0, fileset_sub_idx=0):
self.fileset = Fileset(path, ext, readOne)
self.fileset_idx = fileset_idx
self.fileset_sub_idx = fileset_sub_idx
if self.fileset_sub_idx < 0: # 再读上一个太复杂了,直接放弃
self.fileset_sub_idx = 0
if self.fileset_idx >= len(self.fileset):
self.fileset_idx = 0
self.cache = self.fileset[self.fileset_idx]
self.fileset_idx += 1
self.cache_idx = self.fileset_sub_idx
def __call__(self, size=512):
while len(self.cache) < self.cache_idx + size:
if self.fileset_idx >= len(self.fileset):
self.fileset_idx = 0
self.fileset_sub_idx = self.cache_idx - len(self.cache)
self.cache = self.cache[self.cache_idx:] + self.fileset[self.fileset_idx]
self.cache_idx = 0
self.fileset_idx += 1
retn = self.cache[self.cache_idx:self.cache_idx + size]
self.cache_idx += size
self.fileset_sub_idx += size
return retn
def __repr__(self):
return f"Hcorpus(r'{self.fileset.root}', fileset_idx={self.fileset_idx-1}, fileset_sub_idx={self.fileset_sub_idx})"
- tokenizer 包的文档
- 繁体转换成简体:train_tokenizer_pre.py
- 获取常用 emoji:tmp_emoji.py
- 分词统计词频:tokenizer_jieba.py
- 区分词性并构造 BPE 语料:train_tokenizer_jieba_statistics.py
- 训练 BPE 模型:train_tokenizer.py
- 最终训练好的 BPE 模型:HelloBPE.tokenizer.json
from tokenizers import Tokenizer
tokenizer = Tokenizer.from_file("HelloBPE.tokenizer.json")
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
x = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * self.weight
class RotaryEmbedding(nn.Module):
def __init__(self, head_dim: int, max_seq_len: int, device=device, theta: float = 10000.0):
super().__init__()
self.head_dim = head_dim
self.set_max_seq_len(max_seq_len, device, theta)
def set_max_seq_len(self, max_seq_len: int, device=device, theta: float = 10000.0):
self.max_seq_len = max_seq_len
freqs = 1.0 / (theta ** (torch.arange(0, self.head_dim, 2).float().to(device) / self.head_dim))
t = torch.arange(max_seq_len, device=device) # type: ignore
freqs = torch.outer(t, freqs).float() # 外积
self.freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # 复数,模 1,角度 freqs
self.freqs_cis.requires_grad = False # filter(lambda p : p.requires_grad, model.parameters())
def rotary_emb(self, x):
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
x_out = torch.view_as_real(x_ * self.local_freqs_cis).flatten(3)
return x_out.type_as(x)
def forward(self, start_pos: int, seqlen: int):
self.local_freqs_cis = self.freqs_cis[start_pos: start_pos + seqlen].view(1, seqlen, 1, -1) # cacheKV 相关,可忽略
self.local_freqs_cis.requires_grad = False
return self.rotary_emb
class Attention(nn.Module):
def __init__(self, hidden_size, n_heads, cacheKV, max_batch_size, max_seq_len, device=device):
super().__init__()
self.n_heads = n_heads
self.head_dim = hidden_size // n_heads
self.q_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.k_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.v_proj = nn.Linear(hidden_size, hidden_size, bias=False)
self.o_proj = nn.Linear(hidden_size, hidden_size, bias=False)
def forward(self, hidden_states, rotary_emb, start_pos=0, mask=None, is_causal=True):
bsz, seqlen, hidden_size = hidden_states.shape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = q.view(bsz, seqlen, self.n_heads, self.head_dim)
k = k.view(bsz, seqlen, self.n_heads, self.head_dim)
v = v.view(bsz, seqlen, self.n_heads, self.head_dim)
q = rotary_emb(q)
k = rotary_emb(k)
q = q.transpose(1, 2) # (bs, n_heads, seqlen, head_dim)
k = k.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
v = v.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
output = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, is_causal=is_causal)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, hidden_size)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, hidden_size):
super().__init__()
intermediate_size = int(2 * hidden_size)
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
def forward(self, x):
gate = F.silu(self.gate_proj(x))
intermediate_states = self.up_proj(x)
return self.down_proj(gate * intermediate_states)
class Decoder(nn.Module):
def __init__(self, hidden_size, n_heads, cacheKV, max_batch_size, max_seq_len):
super().__init__()
self.ln1 = RMSNorm(hidden_size)
self.attn = Attention(hidden_size, n_heads, cacheKV, max_batch_size, max_seq_len)
self.ln2 = RMSNorm(hidden_size)
self.mlp = MLP(hidden_size)
def forward(self, x, rotary_emb, start_pos, mask=None, is_causal=True):
x = x + self.attn(self.ln1(x), rotary_emb, start_pos, mask, is_causal)
return x + self.mlp(self.ln2(x))
class HelloGPT(nn.Module):
def __init__(self, vocab_size=32765, hidden_size=768, n_heads=12, max_seq_len=1024, n_layers=12, cacheKV=False, max_batch_size=1):
super().__init__()
# hidden_size > 8.33 * ln(vocab_size)
self.tok_embeddings = nn.Embedding(vocab_size, hidden_size)
self.rotary_emb = RotaryEmbedding(hidden_size // n_heads, max_seq_len * 2)
self.rotary_emb.requires_grad = False
self.layers = nn.ModuleList()
for layer_id in range(n_layers):
self.layers.append(Decoder(hidden_size, n_heads, cacheKV, max_batch_size, max_seq_len))
self.norm = RMSNorm(hidden_size)
self.ln2 = nn.Linear(hidden_size, vocab_size, bias=False)
def forward(self, input_ids: torch.Tensor, start_pos=0, no_mask=True):
_bsz, seqlen = input_ids.shape
h = self.tok_embeddings(input_ids)
# 预计算,减少每一层的重复计算
rotary_emb = self.rotary_emb(start_pos, seqlen)
for layer in self.layers:
h = layer(h, rotary_emb, start_pos)
h = self.norm(h)
h = self.ln2(h)
return h.float()
data = Hcorpus(r'D:\datasets\h-corpus')
def get_batch(size=512, bsz=8):
x = []
y = []
for i in range(bsz):
tmp = data(size+1)
x.append(tmp[:size])
y.append(tmp[1:])
return torch.tensor(x).to(device), torch.tensor(y).to(device)
model = HelloGPT(n_layers=8, max_seq_len=768)
model.to(device)
## 初始化训练器
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = torch.optim.Adam(train_parameters, lr=6e-4) # Adam 优化器
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=5, T_mult=2) # 余弦退火学习率
torch.manual_seed(1337) # 魔术随机种子
total_loss = 0
print_iter = 20
for epoch in range(1, 100001):
optimizer.zero_grad(set_to_none=True) # 清空梯度,节省显存
x, y = get_batch(size=384, bsz=4) # x 是训练语料 y 是 x 移动了一位,当做预测目标
y_ = model(x) # 通过 x 预测的 y
loss = criterion(y_.view(-1, 32765), y.view(-1)) # 计算损失
loss.backward() # 反向传播梯度
torch.nn.utils.clip_grad_norm_(train_parameters, 0.5) # 梯度裁剪,减轻过拟合
optimizer.step() # 通过梯度优化训练参数
scheduler.step() # 计算下一步的学习率
total_loss += loss # 累计损失
if epoch % print_iter == 0:
print(data)
print(f'epoch: {epoch} lr: {scheduler.get_last_lr()[0]:.4e} loss: {total_loss / print_iter:.4e}')
total_loss = 0
with open('tmp_training.pkl', 'rb') as file:
epoch = pickle.load(file) # 读取 epoch 位置
tmp_fileset_idx = pickle.load(file) # 读取 data 位置
tmp_fileset_sub_idx = pickle.load(file)
# 恢复数据位置
data = Hcorpus(r'D:\datasets\h-corpus', fileset_idx=tmp_fileset_idx-1, fileset_sub_idx=tmp_fileset_sub_idx)
model = torch.load(f'tmp_model_{epoch}.pth') # 恢复模型
print(f'start from epoch: {epoch} data: {data}')
save_iter = 5000
for epoch in range(1, 100001):
pass
if epoch % save_iter == 0:
optimizer.zero_grad(set_to_none=True) # 清空梯度,节省显存
with open('tmp_training.pkl', 'wb') as file:
pickle.dump(epoch, file) # 保存 epoch 位置
pickle.dump(data.fileset_idx, file) # 保存 data 位置
pickle.dump(data.fileset_sub_idx, file)
torch.save(model, f'tmp_model_{epoch}.pth') # 保存模型
print(f'save to tmp_model_{epoch}.pth')
writer = SummaryWriter('logs') # tensorboard --logdir logs
for epoch in range(1, 100001):
pass
writer.add_scalar('lr', scheduler.get_last_lr()[0], epoch)
writer.add_scalar('loss', loss, epoch)
if epoch % print_iter == 0:
pass
writer.add_scalar('total_loss', total_loss / print_iter, epoch)
writer.close()
class RotaryEmbedding(nn.Module):
pass
def inverse_rotary_emb(self, x):
x_ = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
x_out = torch.view_as_real(x_ * self.local_freqs_cis_inverse).flatten(3)
return x_out.type_as(x)
def inverse_forward(self, start_pos: int, seqlen: int):
self.local_freqs_cis_inverse = self.freqs_cis[start_pos: start_pos + seqlen].view(1, seqlen, 1, -1) # cacheKV 相关,可忽略
self.local_freqs_cis_inverse = self.local_freqs_cis_inverse.conj() # 乘上共轭就旋转回去了
self.local_freqs_cis.requires_grad = False
return self.inverse_rotary_emb
class Attention(nn.Module):
pass
def forward(self, hidden_states, rotary_emb, start_pos=0, mask=None, is_causal=True):
pass
if self.cacheKV: # cacheKV 相关,可忽略
self.cache_k[:bsz, start_pos: start_pos + seqlen] = k
self.cache_v[:bsz, start_pos: start_pos + seqlen] = v
k = self.cache_k[:bsz, : start_pos + seqlen]
v = self.cache_v[:bsz, : start_pos + seqlen]
def streaming_llm(self, start_pos, seqlen, to_pos, inverse_rotary_emb, rotary_emb, bsz):
k = self.cache_k[:bsz, start_pos: start_pos + seqlen]
v = self.cache_v[:bsz, start_pos: start_pos + seqlen]
k = inverse_rotary_emb(k)
k = rotary_emb(k)
self.cache_k[:bsz, to_pos: to_pos + seqlen] = k
self.cache_v[:bsz, to_pos: to_pos + seqlen] = v
class HelloGPT(nn.Module):
pass
def streaming_llm(self, start_pos, seqlen, to_pos, max_batch_size=1):
rotary_emb = self.rotary_emb(to_pos, seqlen)
inverse_rotary_emb = self.rotary_emb.inverse_forward(start_pos, seqlen)
for layer in self.layers:
layer.attn.streaming_llm(start_pos, seqlen, to_pos, inverse_rotary_emb, rotary_emb, max_batch_size)