-
Notifications
You must be signed in to change notification settings - Fork 7
LinZhu111/EVSNN
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
## Minimal code for running inference on spiking neural network trained for Event-based Video Reconstruction via Potential-assisted Spiking Neural Network, CVPR2022. ======================================================================= ## Requirements * Python >= 3.7 (3.9 recommended) * PyTorch >= 1.6 (1.9 recommended) * Spikingjelly = 0.0.0.0.6 ====================================================================== ## Running with Anaconda cuda_version=10.2 conda create -n snnrec conda activate snnrec conda install -y pytorch torchvision cudatoolkit=$cuda_version -c pytorch conda install pandas ## Install Spikingjelly pip install spikingjelly==0.0.0.0.6 ===================================================================== ## Inference Usage: python rec_snn.py [-network NETWORK] [-path_to_pretrain_models PATH_TO_PRETRAIN_MODELS] [-path_to_event_files PATH_TO_EVENT_FILES] [-save_path SAVE_PATH] [-height HEIGHT] [-width WIDTH] [-num_events_per_pixel NUM_EVENTS_PER_PIXEL] For example, to run EVSNN: python rec_snn.py -network EVSNN_LIF_final -path_to_pretrain_models ./pretrained_models/EVSNN.pth To run PA-EVSNN python rec_snn.py -network PAEVSNN_LIF_AMPLIF_final -path_to_pretrain_models ./pretrained_models/PAEVSNN.pth ====================================================================== ## Folder Structure minimal_code_snn/ | ├── rec_snn.py - evaluation of trained model | ├── data/ - default directory for storing input data | ├── model/ - models, losses, and metrics | ├── dataset.py | ├── snn_network.py | ├── neurons/ | ├── spiking_neuron.py - spiking neurons, MP neurons | ├── results/ - generated results are saved here | └── utils/ - small utility functions ├── util.py └── ...
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published