- temporal graph:
Dynamic.txt
:u, i, ts , edge feature
- node feature:
Node_Features.txt
:u, node features
- Social Data:
- Download Link
- Download to the folder 'social_data/'
- DPPIN:
- Download Link
- Download to the folder 'dppin_data/'
- Python >= 3.7
- Package requirements
pandas
torch == 1.8.1
tqdm == 4.59.0
numpy == 1.20.1
scikit_learn == 1.0.2
psutil == 5.8.0
jsonlines == 2.0.0
pytorch_geometric == 1.7.0
cd Temp-GFSM
python3 main.py --dir 'social_data/' --batch_size 10 --k_shot 3 --k_query 3 --n_way 3 --num_task 20 --update_step 5 --nhid 32 --update_lr 0.001 --device 1 --labels
Arguments in `main.py` need to be specified for different datasets:
* Social Data:
* --labels 'dblp_ct1_1,dblp_ct1_0,facebook_ct1_1,facebook_ct1_0,tumblr_ct1_1,tumblr_ct1_0,highschool_ct1_1,highschool_ct1_0,infectious_ct1_1,infectious_ct1_0,mit_ct1_1,mit_ct1_0'
* --logdir 'logs-sd-b1-'
* --output_file''output-sd-'
* --total_sample_g {'dblp_ct1_1':755,'dblp_ct1_0':755,'facebook_ct1_1':995,'facebook_ct1_0':995,'highschool_ct1_1':179,'highschool_ct1_0':179, 'infectious_ct1_1':199, 'infectious_ct1_0':199,'mit_ct1_1':79,'mit_ct1_0':79,'tumblr_ct1_1':373, 'tumblr_ct1_0':373}
* DPPIN Data:
* --labels 'Uetz,Yu,Babu,Breitkreutz,Gavin,Hazbun,Ho,Ito,Krogan_LCMS,Krogan_MALDI,Lambert,Tarassov'
* --logdir 'logs-ppin-b1-'
* --output_file''output-ppin-'
* --total_sample_g 11
This repository is for the KDD' 2022 paper "Meta-Learned Metrics over Multi-Evolution Temporal Graphs" (Link) .
Temp-GFSM first models temporal graphs for multiple dynamic evolution pattern, then it learns the accurate and adaptive metrics over them via the representation learning techniques.
If you use the materials from this repositiory, please refer to our paper.
@inproceedings{DBLP:conf/kdd/FuFMTH22,
author = {Dongqi Fu and
Liri Fang and
Ross Maciejewski and
Vetle I. Torvik and
Jingrui He},
title = {Meta-Learned Metrics over Multi-Evolution Temporal Graphs},
booktitle = {{KDD} '22: The 28th {ACM} {SIGKDD} Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, August 14 - 18, 2022},
pages = {367--377},
publisher = {{ACM}},
year = {2022}
}