Codes for SUTD deep learning course
Ex | Description |
---|---|
lecture_4 | Handwritten SGD |
lecture_5 | Performance evaluation of for-loop, numpy and pytorch |
lecture_6 | Calculating gradient with pytorch autograd |
lecture_6(2) | Handwritten neural network |
lecture_12 | Gaussian mixtures |
lecture_13 | Gradient ascend adverserial attack |
lecture_16 | Foolbox adverserial attack |
HW | Description |
---|---|
1 | An implementation of 17 class-wise binary classifiers |
2 | Simple 2 layer neural network for Fashion MNIST dataset, usage of Python dataloader class |
3 | Pytorch Resnet classifier on Imagenet dataset, usage of different data augmentation methods such as resize, Fivecrop and data normalization |
4 | Pytorch Resnet classifier on 102 Flowers dataset, usage of transfer learning with weights from Imagenet dataset |
5 | Pytorch LSTM classifier on country names dataset |
6 | Pytorch LSTM sequence generator on Star Trek dataset, usage of sampling with temperature |
PRJ | Description |
---|---|
1 | Pytorch Resnet on PascalVOC imageset with GUI viewer, our submission achieved top 20 on global leaderboard |
2 | Pytorch LSTM sequence generator on Clickbait dataset to generate clickbait |