-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Created a script to download models and save them in a sharded form.
- Loading branch information
1 parent
6d24135
commit 905aa23
Showing
1 changed file
with
98 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
#------------------------------------------------------------------------------ | ||
#-- Copyright (c) 2021-present LyaaaaaGames | ||
#-- Copyright (c) 2022-present AIdventure_Server contributors | ||
#-- | ||
#-- Author : Lyaaaaaaaaaaaaaaa | ||
#-- | ||
#-- Implementation Notes: | ||
#-- - A script to quickly download and shard any model before saving them. | ||
#-- Anticipated changes: | ||
#-- - Add an argument to specify how much max ram for the gpu and cpu. | ||
#-- Changelog: | ||
#-- - 05/12/2023 Lyaaaaa | ||
#-- - Created the file | ||
#------------------------------------------------------------------------------ | ||
|
||
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer | ||
from accelerate import Accelerator | ||
import tempfile | ||
import os | ||
import requests | ||
import sys | ||
import torch | ||
import argparse | ||
|
||
name_help = "The name of the model found on huggingface.co (sometimes with the repository as well)." | ||
name_help += " For exemple, to download https://huggingface.co/gpt2 you should enter 'gpt2'." | ||
name_help += " To download, https://huggingface.co/beomi/llama-2-ko-7b, you should enter 'beomi/llama-2-ko-7b'." | ||
|
||
shard_help = "If true, the checkpoints will be splitted into smaller parts." | ||
|
||
max_shard_size_help = "The maximum size for a checkpoint before being sharded." | ||
max_shard_size_help += "Checkpoints shard will then be each of size lower than this size." | ||
max_shard_size_help += "Expressed as a string, needs to be digits followed by a unit (like '5MB')" | ||
|
||
parser = argparse.ArgumentParser(description="Process parameters.") | ||
|
||
parser.add_argument("--model_name", required = True, type = str, help = name_help) | ||
parser.add_argument("--shard_model", type = bool, default = True, help = shard_help) | ||
parser.add_argument("--max_shard_size", type = str, default = "200MB", help = max_shard_size_help) | ||
parser.add_argument("--save_path", type = str, default = "models/customs/") | ||
|
||
parameters = parser.parse_args() | ||
model_name = parameters.model_name | ||
accelerator = Accelerator() | ||
model_path = os.path.join(parameters.save_path, model_name) | ||
temp_folder = None | ||
max_shard_size = parameters.max_shard_size | ||
shard_model = parameters.shard_model | ||
|
||
def create_offload_folder(): | ||
global temp_folder | ||
cwd = os.getcwd() | ||
temp_folder = tempfile.TemporaryDirectory(prefix = "cache_", | ||
dir = cwd) | ||
|
||
def create_path(p_path : str): | ||
if not os.path.exists(p_path): | ||
os.makedirs(p_path) | ||
|
||
|
||
create_offload_folder() | ||
create_path(model_path) | ||
|
||
args = {"low_cpu_mem_usage" : True, | ||
"torch_dtype" : torch.float16, | ||
"offload_state_dict" : True, | ||
#"max_memory" : {0:"3GB", "cpu": "12GB"}, #0 is your GPU. You might want to increase both limits | ||
"offload_folder" : temp_folder.name,} | ||
|
||
Tokenizer = AutoTokenizer.from_pretrained(model_name, | ||
cache_dir = temp_folder.name, | ||
resume_download = True) | ||
|
||
|
||
Model = AutoModelForCausalLM.from_pretrained(model_name, | ||
cache_dir = temp_folder.name, | ||
resume_download = True, | ||
**args) | ||
|
||
|
||
Tokenizer.save_pretrained(model_path) | ||
|
||
if shard_model: | ||
Model.save_pretrained( | ||
model_path, | ||
max_shard_size = max_shard_size, | ||
is_main_process = accelerator.is_main_process, | ||
save_function = accelerator.save) | ||
else: | ||
Model.save_pretrained( | ||
model_path, | ||
is_main_process = accelerator.is_main_process, | ||
save_function = accelerator.save) | ||
|
||
del Tokenizer | ||
del Model | ||
accelerator.free_memory() | ||
del temp_folder |