Note: most of the functionality of this plugin is now supported natively in ES: https://www.elastic.co/guide/en/elasticsearch/reference/current/dense-vector.html
Also see https://www.elastic.co/blog/text-similarity-search-with-vectors-in-elasticsearch.
This plugin is no longer maintained
This plugin allows you to score documents based on arbitrary raw vectors, using dot product or cosine similarity.
Master branch targets Elasticsearch 5.4. Note that version 5.5+ is not supported as Elasticsearch changed their plugin mechanism. An update for 5.5+ will be developed soon (PRs welcome).
Branch es-2.4 targets Elasticsearch 2.4.x
The aim of this plugin is to enable real-time scoring of vector-based models, in particular factor-based recommendation models.
In this case, user and item factor vectors are indexed using
the Delimited Payload Token Filter,
e.g. the vector [1.2, 0.1, 0.4, -0.2, 0.3]
is indexed as a string:
0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3
.
This stores the vector indices as "terms" and the vector values as "payloads".
This plugin provides a native script payload_vector_score
for use
in function_score
queries.
The script computes the dot product between the query vector and the document vector. In pseudo-code:
for (i : vector_indices_terms) {
payload = indexTermField(i).getPayload()
score += payload * queryVector(i)
}
Targets Elasticsearch 5.4.0
and Java 1.8
.
ELASTIC_HOME/bin/elasticsearch-plugin install https://github.com/MLnick/elasticsearch-vector-scoring/releases/download/v5.4.0/elasticsearch-vector-scoring-5.4.0.zip
- Build:
mvn package
- Install plugin in Elasticsearch:
ELASTIC_HOME/bin/elasticsearch-plugin install file:///PROJECT_HOME/target/releases/elasticsearch-vector-scoring-5.4.0.zip
(stop ES first).
Start Elasticsearch: ELASTIC_HOME/bin/elasticsearch
. You should see the plugin registered at Elasticsearch startup:
...
[2017-03-29T13:46:57,804][INFO ][o.e.p.PluginsService ] [2Zs8kW3] loaded plugin [elasticsearch-vector-scoring]
...
Below are examples illustrating basic usage. For a more complete usage example, including training a recommender model with Apache Spark, see the Elasticsearch Spark Recommender on IBM Code.
curl -s -XPUT 'http://localhost:9200/test?pretty' -d '{
"settings" : {
"analysis": {
"analyzer": {
"payload_analyzer": {
"type": "custom",
"tokenizer":"whitespace",
"filter":"delimited_payload_filter"
}
}
}
}
}'
curl -s -XPUT 'http://localhost:9200/test/_mapping/movies?pretty' -d '
{
"movies" : {
"properties" : {
"@model_factor": {
"type": "text",
"term_vector": "with_positions_offsets_payloads",
"analyzer" : "payload_analyzer"
}
}
}
}'
curl -s -XPUT 'http://localhost:9200/test/movies/1?pretty' -d '
{
"@model_factor":"0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3",
"name": "Test 1"
}'
curl -s -XPUT 'http://localhost:9200/test/movies/2?pretty' -d '
{
"@model_factor":"0|0.1 1|2.3 2|-1.6 3|0.7 4|-1.3",
"name": "Test 2"
}'
curl -s -XPUT 'http://localhost:9200/test/movies/3?pretty' -d '
{
"@model_factor":"0|-0.5 1|1.6 2|1.1 3|0.9 4|0.7",
"name": "Test 3"
}'
curl -s -XGET 'http://localhost:9200/test/movies/1/_termvector?pretty' -d '
{
"fields" : ["@model_factor"],
"payloads" : true,
"positions" : true
}'
curl -s -XPOST 'http://localhost:9200/test/movies/_search?pretty' -d '
{
"query": {
"function_score": {
"query" : {
"query_string": {
"query": "*"
}
},
"script_score": {
"script": {
"inline": "payload_vector_score",
"lang": "native",
"params": {
"field": "@model_factor",
"vector": [0.1,2.3,-1.6,0.7,-1.3],
"cosine" : true
}
}
},
"boost_mode": "replace"
}
}
}'
This query returns results sorted by cosine similarity (including the document itself). For "similar item" style recommendations, you can filter the query item from the returned results.
{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 5,
"successful" : 5,
"failed" : 0
},
"hits" : {
"total" : 3,
"max_score" : 0.99999994,
"hits" : [ {
"_index" : "test",
"_type" : "movies",
"_id" : "2",
"_score" : 0.99999994,
"_source" : {
"@model_factor" : "0|0.1 1|2.3 2|-1.6 3|0.7 4|-1.3",
"name" : "Test 2"
}
}, {
"_index" : "test",
"_type" : "movies",
"_id" : "3",
"_score" : 0.2175577,
"_source" : {
"@model_factor" : "0|-0.5 1|1.6 2|1.1 3|0.9 4|0.7",
"name" : "Test 3"
}
}, {
"_index" : "test",
"_type" : "movies",
"_id" : "1",
"_score" : -0.19618797,
"_source" : {
"@model_factor" : "0|1.2 1|0.1 2|0.4 3|-0.2 4|0.3",
"name" : "Test 1"
}
} ]
}
}
- Tests