Skip to content

L3E-HDC is a framework by ensembling HDC for the language task, which is contributed by Fangxin Liu and Haomin Li.

Notifications You must be signed in to change notification settings

MXHX7199/SIGIR22-EnsembleHDC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

L3E-HD_logo

L3E-HD: A Framework Enabling Efficient Ensemble in High-Dimensional Space for Language Tasks

pytorch implementation of L3E-HD for Language Tasks.

overview

This repository provides a implementation of the framework for language tasks.

  • Code

    • hdc.py
      • implementation of HDC framework, using ngram for encoding and hamming distance for similarity calculation.
    • adaboost.py
      • implementation of adaboost framework, using HdC framework as the classifier.
    • main.py
      • provides different datasets and paraameters for user to choose.
  • dataset

    • language
      • Language classification task.
    • SST-2
      • The Stanford Sentiment Treebank from GLUE, for sentiment classification task.
    • ag_news_csv
      • News articles classification task.
    • spam.csv
      • Text spam classification task.
    • Youtube-all
      • Youtube comment spam classification task.

Run model

Example

python main.py --task-id 5 --classifiers 4 --boost-lr 1.0 --dim 2000 --ngram 4 --retrain-rounds 0 --hdc-lr 0.0005

Parameters

  • --task-id
    • from 1 to 5, indicating different tasks
  • --classifiers
    • the number of classifiers for the boost framework
  • --boost-lr
    • learning rate of boost framework
  • --dim
    • dimension of HDC framework
  • --ngram
    • value of n for ngram encoding method in HDC framework
  • --retrain-rounds
    • iterations of retraining in HDC framework
  • --hdc-lr
    • learning rate of HDC framework

Citation

We now have a paper, titled "L3E-HD: A Framework Enabling Efficient Ensemble in High-Dimensional Space for Language Tasks", which is published in SIGIR-2022.

@inproceedings{liu2021L3EHD,
 title={L3E-HD: A Framework Enabling Efficient Ensemble in High-Dimensional Space for Language Tasks},
 author={Liu, Fangxin and Li, Haomin and Jiang, Li},
 booktitle={Proceedings of the International ACM Sigir Conference on Research and Development in Information Retrieval (SIGIR)},
 year={2022}
}

About

L3E-HDC is a framework by ensembling HDC for the language task, which is contributed by Fangxin Liu and Haomin Li.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages