Skip to content

Commit

Permalink
Merge pull request #448 from rmcdermo/master
Browse files Browse the repository at this point in the history
NIST Pool Fires: add NIST puffing frequency results
  • Loading branch information
rmcdermo authored Sep 11, 2023
2 parents 736acc6 + dd9a0fa commit 184155b
Show file tree
Hide file tree
Showing 7 changed files with 332 additions and 2 deletions.
4 changes: 4 additions & 0 deletions .github/workflows/Liquid_Pool_Fires.yml
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,10 @@ jobs:
echo $GITHUB_WORKSPACE
cd $GITHUB_WORKSPACE/Liquid_Pool_Fires/NIST_Pool_Fires/Computational_Results/2023/NIST
python NIST_Pool_Fires_plot_cmp.py
python NIST_Pool_Fires_1m_methanol_power_spectrum.py
python NIST_Pool_Fires_30cm_methanol_power_spectrum.py
python NIST_Pool_Fires_37cm_20kW_propane_power_spectrum.py
python NIST_Pool_Fires_37cm_34kW_propane_power_spectrum.py
# Step 2: push the plots to the releases page
- name: Push NIST NIST Pool Fires Results to release
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# McDermott
# 25 March 2021
# power_spectrum.py

import sys
# sys.path.append('<path to macfp-db>/macfp-db/Utilities/')
sys.path.append('../../../../../../macfp-db/Utilities/')

import macfp
import importlib
importlib.reload(macfp)
import matplotlib.pyplot as plt
from scipy import signal
import pandas as pd
import numpy as np

# get the model results
M1 = pd.read_csv('./Output/NIST_Methanol_1m_GEOM_Predicted_10cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M2 = pd.read_csv('./Output/NIST_Methanol_1m_GEOM_Predicted_5cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M3 = pd.read_csv('./Output/NIST_Methanol_1m_GEOM_Predicted_2p5cm_cat_devc.csv', header=1, sep=' *, *', engine='python')

fs1 = len(M1['Time'])/max(M1['Time'])
fs2 = len(M2['Time'])/max(M2['Time'])
fs3 = len(M3['Time'])/max(M3['Time'])

x1 = M1['"w"'][M1['Time']>30.]
x2 = M2['"w"'][M2['Time']>30.]
x3 = M3['"w"'][M3['Time']>30.]

f1, Pxx_den_1 = signal.periodogram(x1, fs1)
f2, Pxx_den_2 = signal.periodogram(x2, fs2)
f3, Pxx_den_3 = signal.periodogram(x3, fs3)

# plot experimental result

fpuff = 1.37
funce = 0.0
fmeas = np.array([fpuff, fpuff])
PSDmeas = np.array([0., 2.])
fh=macfp.plot_to_fig(fmeas, PSDmeas,
plot_type='linear',
x_min=0.5,x_max=4,y_min=0,y_max=15,
x_label='frequency [Hz]',
y_label='PSD [V**2/Hz]',
line_style='--',
line_width=2,
line_color='black',
institute_label='NIST predicted MLR',
revision_label='MaCFP-3, Tsukuba, Japan',
data_label='Exp',
plot_title='NIST 1 m Methanol Puffing Frequency',
show_legend=True,
legend_location='right')

# add error to measuered puffing freq
plt.fill_betweenx(PSDmeas, np.array([fpuff-funce, fpuff-funce]), np.array([fpuff+funce, fpuff+funce]), color='lightgrey', figure=fh)

fh=macfp.plot_to_fig(f1, Pxx_den_1, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2.5,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=10$ cm', line_style='-', line_width=1,line_color='black', marker_style='o',marker_size=4,marker_edge_color='black', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='right')
fh=macfp.plot_to_fig(f2, Pxx_den_2, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2.5,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=5$ cm', line_style='-', line_width=1,line_color='magenta',marker_style='^',marker_size=4,marker_edge_color='magenta',marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='right')
fh=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2.5,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=2.5$ cm', line_style='-.',line_width=1,line_color='red',marker_style='s',marker_size=4,marker_edge_color='red', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='right')

print(f3[np.where(Pxx_den_3==Pxx_den_3.max())])

# plt.show()

plt.savefig('./Plots/NIST_1m_Methanol_puffing_frequency.pdf')

# loglog spectrum
fh2=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',plot_title='NIST 1 m Methanol Power Spectrum',data_label='FDS $\Delta x=2.5$ cm',line_style='-', line_width=1,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,institute_label='NIST predicted MLR')
macfp.plot_to_fig(f3, f3**(-5./3.),plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f**-5/3',line_style='--', line_width=2,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
fnyquist = np.array([0.5*fs3, 0.5*fs3])
macfp.plot_to_fig(fnyquist, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f Nyquist',line_style='--', line_width=1,line_color='red',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
macfp.plot_to_fig(fmeas, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f puffing',line_style='--', line_width=1,line_color='green',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)

# plt.show()

plt.savefig('./Plots/NIST_1m_Methanol_Power_Spectrum.pdf')
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# McDermott
# 25 March 2021
# power_spectrum.py

import sys
# sys.path.append('<path to macfp-db>/macfp-db/Utilities/')
sys.path.append('../../../../../../macfp-db/Utilities/')

import macfp
import importlib
importlib.reload(macfp)
import matplotlib.pyplot as plt
from scipy import signal
import pandas as pd
import numpy as np

# get the model results
M1 = pd.read_csv('./Output/NIST_Methanol_GEOM_Predicted_4cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M2 = pd.read_csv('./Output/NIST_Methanol_GEOM_Predicted_2cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M3 = pd.read_csv('./Output/NIST_Methanol_GEOM_Predicted_1cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M4 = pd.read_csv('./Output/NIST_Methanol_GEOM_Predicted_p5cm_cat_devc.csv', header=1, sep=' *, *', engine='python')

fs1 = len(M1['Time'])/max(M1['Time'])
fs2 = len(M2['Time'])/max(M2['Time'])
fs3 = len(M3['Time'])/max(M3['Time'])
fs4 = len(M4['Time'])/max(M4['Time'])

x1 = M1['"w"'][M1['Time']>30.]
x2 = M2['"w"'][M2['Time']>30.]
x3 = M3['"w"'][M3['Time']>30.]
x4 = M4['"w"'][M4['Time']>30.]

f1, Pxx_den_1 = signal.periodogram(x1, fs1)
f2, Pxx_den_2 = signal.periodogram(x2, fs2)
f3, Pxx_den_3 = signal.periodogram(x3, fs3)
f4, Pxx_den_4 = signal.periodogram(x4, fs4)

# plot experimental result

fpuff = 2.64
funce = 0.06
fmeas = np.array([fpuff, fpuff])
PSDmeas = np.array([0., .75])
fh=macfp.plot_to_fig(fmeas, PSDmeas,
plot_type='linear',
x_min=0.5,x_max=4,y_min=0,y_max=15,
x_label='frequency [Hz]',
y_label='PSD [V**2/Hz]',
line_style='--',
line_width=2,
line_color='black',
institute_label='NIST predicted MLR',
revision_label='MaCFP-3, Tsukuba, Japan',
data_label='Exp',
plot_title='NIST 30 cm Methanol Puffing Frequency',
show_legend=True,
legend_location='right')

# add error to measuered puffing freq
plt.fill_betweenx(PSDmeas, np.array([fpuff-funce, fpuff-funce]), np.array([fpuff+funce, fpuff+funce]), color='lightgrey', figure=fh)

fh=macfp.plot_to_fig(f1, Pxx_den_1, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=1,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=4$ cm', line_style='-', line_width=1,line_color='black', marker_style='o',marker_size=4,marker_edge_color='black', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f2, Pxx_den_2, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=1,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=2$ cm', line_style='-', line_width=1,line_color='magenta',marker_style='^',marker_size=4,marker_edge_color='magenta',marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=1,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=1$ cm', line_style='-.',line_width=1,line_color='red',marker_style='s',marker_size=4,marker_edge_color='red', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f4, Pxx_den_4, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=1,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=0.5$ cm', line_style='-.',line_width=1,line_color='blue',marker_style='>',marker_size=4,marker_edge_color='blue', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')

print(f4[np.where(Pxx_den_4==Pxx_den_4.max())])

# plt.show()

plt.savefig('./Plots/NIST_30cm_Methanol_puffing_frequency.pdf')

# loglog spectrum
fh2=macfp.plot_to_fig(f4, Pxx_den_4, plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',plot_title='NIST 30 cm Methanol Power Spectrum',data_label='FDS $\Delta x=0.5$ cm',line_style='-', line_width=1,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,institute_label='NIST predicted MLR')
macfp.plot_to_fig(f4, f4**(-5./3.),plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f**-5/3',line_style='--', line_width=2,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
fnyquist = np.array([0.5*fs4, 0.5*fs4])
macfp.plot_to_fig(fnyquist, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f Nyquist',line_style='--', line_width=1,line_color='red',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
macfp.plot_to_fig(fmeas, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f puffing',line_style='--', line_width=1,line_color='green',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)

# plt.show()

plt.savefig('./Plots/NIST_30cm_Methanol_Power_Spectrum.pdf')
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# McDermott
# 25 March 2021
# power_spectrum.py

import sys
# sys.path.append('<path to macfp-db>/macfp-db/Utilities/')
sys.path.append('../../../../../../macfp-db/Utilities/')

import macfp
import importlib
importlib.reload(macfp)
import matplotlib.pyplot as plt
from scipy import signal
import pandas as pd
import numpy as np

# get the model results
M1 = pd.read_csv('./Output/NIST_Propane_20kW_GEOM_Prescribed_4cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M2 = pd.read_csv('./Output/NIST_Propane_20kW_GEOM_Prescribed_2cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M3 = pd.read_csv('./Output/NIST_Propane_20kW_GEOM_Prescribed_1cm_cat_devc.csv', header=1, sep=' *, *', engine='python')

fs1 = len(M1['Time'])/max(M1['Time'])
fs2 = len(M2['Time'])/max(M2['Time'])
fs3 = len(M3['Time'])/max(M3['Time'])

x1 = M1['"w"'][M1['Time']>30.]
x2 = M2['"w"'][M2['Time']>30.]
x3 = M3['"w"'][M3['Time']>30.]

f1, Pxx_den_1 = signal.periodogram(x1, fs1)
f2, Pxx_den_2 = signal.periodogram(x2, fs2)
f3, Pxx_den_3 = signal.periodogram(x3, fs3)

# plot experimental result
fpuff = 2.31
funce = 0.10
fmeas = np.array([fpuff, fpuff])
PSDmeas = np.array([0., 5.])
fh=macfp.plot_to_fig(fmeas, PSDmeas,
plot_type='linear',
x_min=0.5,x_max=4,y_min=0,y_max=15,
x_label='frequency [Hz]',
y_label='PSD [V**2/Hz]',
line_style='--',
line_width=2,
line_color='black',
institute_label='NIST',
revision_label='MaCFP-3, Tsukuba, Japan',
data_label='Exp',
plot_title='NIST 37 cm 20 kW Propane Puffing Frequency',
show_legend=True,
legend_location='right')

# add error to measuered puffing freq
plt.fill_betweenx(PSDmeas, np.array([fpuff-funce, fpuff-funce]), np.array([fpuff+funce, fpuff+funce]), color='lightgrey', figure=fh)

fh=macfp.plot_to_fig(f1, Pxx_den_1, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=6,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=4$ cm', line_style='-', line_width=1,line_color='black', marker_style='o',marker_size=4,marker_edge_color='black', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f2, Pxx_den_2, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=6,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=2$ cm', line_style='-', line_width=1,line_color='magenta',marker_style='^',marker_size=4,marker_edge_color='magenta',marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=6,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=1$ cm', line_style='-.',line_width=1,line_color='red',marker_style='s',marker_size=4,marker_edge_color='red', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')

print(f3[np.where(Pxx_den_3==Pxx_den_3.max())])

# plt.show()

plt.savefig('./Plots/NIST_37cm_20kW_Propane_puffing_frequency.pdf')

# loglog spectrum
fh2=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',plot_title='NIST 37 cm 20 kW Propane Power Spectrum',data_label='FDS $\Delta x=1$ cm',line_style='-', line_width=1,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,institute_label='NIST')
macfp.plot_to_fig(f3, f3**(-5./3.),plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f**-5/3',line_style='--', line_width=2,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
fnyquist = np.array([0.5*fs3, 0.5*fs3])
macfp.plot_to_fig(fnyquist, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f Nyquist',line_style='--', line_width=1,line_color='red',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
macfp.plot_to_fig(fmeas, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f puffing',line_style='--', line_width=1,line_color='green',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)

# plt.show()

plt.savefig('./Plots/NIST_37cm_20kW_Propane_Power_Spectrum.pdf')
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# McDermott
# 25 March 2021
# power_spectrum.py

import sys
# sys.path.append('<path to macfp-db>/macfp-db/Utilities/')
sys.path.append('../../../../../../macfp-db/Utilities/')

import macfp
import importlib
importlib.reload(macfp)
import matplotlib.pyplot as plt
from scipy import signal
import pandas as pd
import numpy as np

# get the model results
M1 = pd.read_csv('./Output/NIST_Propane_34kW_GEOM_Prescribed_2cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M2 = pd.read_csv('./Output/NIST_Propane_34kW_GEOM_Prescribed_1cm_cat_devc.csv', header=1, sep=' *, *', engine='python')
M3 = pd.read_csv('./Output/NIST_Propane_34kW_GEOM_Prescribed_p5cm_cat_devc.csv', header=1, sep=' *, *', engine='python')

fs1 = len(M1['Time'])/max(M1['Time'])
fs2 = len(M2['Time'])/max(M2['Time'])
fs3 = len(M3['Time'])/max(M3['Time'])

x1 = M1['"w"'][M1['Time']>30.]
x2 = M2['"w"'][M2['Time']>30.]
x3 = M3['"w"'][M3['Time']>30.]

f1, Pxx_den_1 = signal.periodogram(x1, fs1)
f2, Pxx_den_2 = signal.periodogram(x2, fs2)
f3, Pxx_den_3 = signal.periodogram(x3, fs3)

# plot experimental result
fpuff = 2.31
funce = 0.10
fmeas = np.array([fpuff, fpuff])
PSDmeas = np.array([0., 1.5])
fh=macfp.plot_to_fig(fmeas, PSDmeas,
plot_type='linear',
x_min=0.5,x_max=4,y_min=0,y_max=15,
x_label='frequency [Hz]',
y_label='PSD [V**2/Hz]',
line_style='--',
line_width=2,
line_color='black',
institute_label='NIST',
revision_label='MaCFP-3, Tsukuba, Japan',
data_label='Exp',
plot_title='NIST 37 cm 34 kW Propane Puffing Frequency',
show_legend=True,
legend_location='right')

# add error to measuered puffing freq
plt.fill_betweenx(PSDmeas, np.array([fpuff-funce, fpuff-funce]), np.array([fpuff+funce, fpuff+funce]), color='lightgrey', figure=fh)

fh=macfp.plot_to_fig(f1, Pxx_den_1, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=2$ cm', line_style='-', line_width=1,line_color='black', marker_style='o',marker_size=4,marker_edge_color='black', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f2, Pxx_den_2, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=1$ cm', line_style='-', line_width=1,line_color='magenta',marker_style='^',marker_size=4,marker_edge_color='magenta',marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')
fh=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='linear',x_min=0.5,x_max=4,y_min=0,y_max=2,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='FDS $\Delta x=0.5$ cm', line_style='-.',line_width=1,line_color='red',marker_style='s',marker_size=4,marker_edge_color='red', marker_fill_color='None',figure_handle=fh,show_legend=True,legend_location='center left')

print(f3[np.where(Pxx_den_3==Pxx_den_3.max())])

# plt.show()

plt.savefig('./Plots/NIST_37cm_34kW_Propane_puffing_frequency.pdf')

# loglog spectrum
fh2=macfp.plot_to_fig(f3, Pxx_den_3, plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',plot_title='NIST 37 cm 34 kW Propane Power Spectrum',data_label='FDS $\Delta x=0.5$ cm',line_style='-', line_width=1,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,institute_label='NIST')
macfp.plot_to_fig(f3, f3**(-5./3.),plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f**-5/3',line_style='--', line_width=2,line_color='black',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
fnyquist = np.array([0.5*fs3, 0.5*fs3])
macfp.plot_to_fig(fnyquist, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f Nyquist',line_style='--', line_width=1,line_color='red',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)
macfp.plot_to_fig(fmeas, PSDmeas,plot_type='loglog',x_min=0.5,x_max=1000,y_min=.00001,y_max=100,x_label='frequency [Hz]',y_label='PSD [V**2/Hz]',data_label='f puffing',line_style='--', line_width=1,line_color='green',show_legend=True,legend_location='center right',legend_framealpha=1.,figure_handle=fh2)

# plt.show()

plt.savefig('./Plots/NIST_37cm_34kW_Propane_Power_Spectrum.pdf')
Loading

0 comments on commit 184155b

Please sign in to comment.